Abstract:We present the first direct simultaneous speech-to-speech translation (Simul-S2ST) model, with the ability to start generating translation in the target speech before consuming the full source speech content and independently from intermediate text representations. Our approach leverages recent progress on direct speech-to-speech translation with discrete units. Instead of continuous spectrogram features, a sequence of direct representations, which are learned in a unsupervised manner, are predicted from the model and passed directly to a vocoder for speech synthesis. The simultaneous policy then operates on source speech features and target discrete units. Finally, a vocoder synthesize the target speech from discrete units on-the-fly. We carry out numerical studies to compare cascaded and direct approach on Fisher Spanish-English dataset.
Abstract:In a speech-to-speech translation (S2ST) pipeline, the text-to-speech (TTS) module is an important component for delivering the translated speech to users. To enable incremental S2ST, the TTS module must be capable of synthesizing and playing utterances while its input text is still streaming in. In this work, we focus on improving the incremental synthesis performance of TTS models. With a simple data augmentation strategy based on prefixes, we are able to improve the incremental TTS quality to approach offline performance. Furthermore, we bring our incremental TTS system to the practical scenario in combination with an upstream simultaneous speech translation system, and show the gains also carry over to this use-case. In addition, we propose latency metrics tailored to S2ST applications, and investigate methods for latency reduction in this context.
Abstract:In this paper, we describe our end-to-end multilingual speech translation system submitted to the IWSLT 2021 evaluation campaign on the Multilingual Speech Translation shared task. Our system is built by leveraging transfer learning across modalities, tasks and languages. First, we leverage general-purpose multilingual modules pretrained with large amounts of unlabelled and labelled data. We further enable knowledge transfer from the text task to the speech task by training two tasks jointly. Finally, our multilingual model is finetuned on speech translation task-specific data to achieve the best translation results. Experimental results show our system outperforms the reported systems, including both end-to-end and cascaded based approaches, by a large margin. In some translation directions, our speech translation results evaluated on the public Multilingual TEDx test set are even comparable with the ones from a strong text-to-text translation system, which uses the oracle speech transcripts as input.
Abstract:Multi-head attention has each of the attention heads collect salient information from different parts of an input sequence, making it a powerful mechanism for sequence modeling. Multilingual and multi-domain learning are common scenarios for sequence modeling, where the key challenge is to maximize positive transfer and mitigate negative transfer across languages and domains. In this paper, we find that non-selective attention sharing is sub-optimal for achieving good generalization across all languages and domains. We further propose attention sharing strategies to facilitate parameter sharing and specialization in multilingual and multi-domain sequence modeling. Our approach automatically learns shared and specialized attention heads for different languages and domains to mitigate their interference. Evaluated in various tasks including speech recognition, text-to-text and speech-to-text translation, the proposed attention sharing strategies consistently bring gains to sequence models built upon multi-head attention. For speech-to-text translation, our approach yields an average of $+2.0$ BLEU over $13$ language directions in multilingual setting and $+2.0$ BLEU over $3$ domains in multi-domain setting.
Abstract:Cross-lingual document representations enable language understanding in multilingual contexts and allow transfer learning from high-resource to low-resource languages at the document level. Recently large pre-trained language models such as BERT, XLM and XLM-RoBERTa have achieved great success when fine-tuned on sentence-level downstream tasks. It is tempting to apply these cross-lingual models to document representation learning. However, there are two challenges: (1) these models impose high costs on long document processing and thus many of them have strict length limit; (2) model fine-tuning requires extra data and computational resources, which is not practical in resource-limited settings. In this work, we address these challenges by proposing unsupervised Language-Agnostic Weighted Document Representations (LAWDR). We study the geometry of pre-trained sentence embeddings and leverage it to derive document representations without fine-tuning. Evaluated on cross-lingual document alignment, LAWDR demonstrates comparable performance to state-of-the-art models on benchmark datasets.
Abstract:Abusive language is a massive problem in online social platforms. Existing abusive language detection techniques are particularly ill-suited to comments containing heterogeneous abusive language patterns, i.e., both abusive and non-abusive parts. This is due in part to the lack of datasets that explicitly annotate heterogeneity in abusive language. We tackle this challenge by providing an annotated dataset of abusive language in over 11,000 comments from YouTube. We account for heterogeneity in this dataset by separately annotating both the comment as a whole and the individual sentences that comprise each comment. We then propose an algorithm that uses a supervised attention mechanism to detect and categorize abusive content using multi-task learning. We empirically demonstrate the challenges of using traditional techniques on heterogeneous content and the comparative gains in performance of the proposed approach over state-of-the-art methods.
Abstract:We study a new application for text generation -- idiomatic sentence generation -- which aims to transfer literal phrases in sentences into their idiomatic counterparts. Inspired by psycholinguistic theories of idiom use in one's native language, we propose a novel approach for this task, which retrieves the appropriate idiom for a given literal sentence, extracts the span of the sentence to be replaced by the idiom, and generates the idiomatic sentence by using a neural model to combine the retrieved idiom and the remainder of the sentence. Experiments on a novel dataset created for this task show that our model is able to effectively transfer literal sentences into idiomatic ones. Furthermore, automatic and human evaluations show that for this task, the proposed model outperforms a series of competitive baseline models for text generation.
Abstract:Multilingual Transformer improves parameter efficiency and crosslingual transfer. How to effectively train multilingual models has not been well studied. Using multilingual machine translation as a testbed, we study optimization challenges from loss landscape and parameter plasticity perspectives. We found that imbalanced training data poses task interference between high and low resource languages, characterized by nearly orthogonal gradients for major parameters and the optimization trajectory being mostly dominated by high resource. We show that local curvature of the loss surface affects the degree of interference, and existing heuristics of data subsampling implicitly reduces the sharpness, although still face a trade-off between high and low resource languages. We propose a principled multi-objective optimization algorithm, Curvature Aware Task Scaling (CATS), which improves both optimization and generalization especially for low resource. Experiments on TED, WMT and OPUS-100 benchmarks demonstrate that CATS advances the Pareto front of accuracy while being efficient to apply to massive multilingual settings at the scale of 100 languages.
Abstract:Multilingual machine translation has attracted much attention recently due to its support of knowledge transfer among languages and the low cost of training and deployment compared with numerous bilingual models. A known challenge of multilingual models is the negative language interference. In order to enhance the translation quality, deeper and wider architectures are applied to multilingual modeling for larger model capacity, which suffers from the increased inference cost at the same time. It has been pointed out in recent studies that parameters shared among languages are the cause of interference while they may also enable positive transfer. Based on these insights, we propose an adaptive and sparse architecture for multilingual modeling, and train the model to learn shared and language-specific parameters to improve the positive transfer and mitigate the interference. The sparse architecture only activates a subnetwork which preserves inference efficiency, and the adaptive design selects different subnetworks based on the input languages. Evaluated on multilingual translation across multiple public datasets, our model outperforms strong baselines in terms of translation quality without increasing the inference cost.
Abstract:Fringe groups and organizations have a long history of using euphemisms--ordinary-sounding words with a secret meaning--to conceal what they are discussing. Nowadays, one common use of euphemisms is to evade content moderation policies enforced by social media platforms. Existing tools for enforcing policy automatically rely on keyword searches for words on a "ban list", but these are notoriously imprecise: even when limited to swearwords, they can still cause embarrassing false positives. When a commonly used ordinary word acquires a euphemistic meaning, adding it to a keyword-based ban list is hopeless: consider "pot" (storage container or marijuana?) or "heater" (household appliance or firearm?) The current generation of social media companies instead hire staff to check posts manually, but this is expensive, inhumane, and not much more effective. It is usually apparent to a human moderator that a word is being used euphemistically, but they may not know what the secret meaning is, and therefore whether the message violates policy. Also, when a euphemism is banned, the group that used it need only invent another one, leaving moderators one step behind. This paper will demonstrate unsupervised algorithms that, by analyzing words in their sentence-level context, can both detect words being used euphemistically, and identify the secret meaning of each word. Compared to the existing state of the art, which uses context-free word embeddings, our algorithm for detecting euphemisms achieves 30-400% higher detection accuracies of unlabeled euphemisms in a text corpus. Our algorithm for revealing euphemistic meanings of words is the first of its kind, as far as we are aware. In the arms race between content moderators and policy evaders, our algorithms may help shift the balance in the direction of the moderators.