Abstract:Multimodal Model Editing (MMED) aims to correct erroneous knowledge in multimodal models. Existing evaluation methods, adapted from textual model editing, overstate success by relying on low-similarity or random inputs, obscure overfitting. We propose a comprehensive locality evaluation framework, covering three key dimensions: random-image locality, no-image locality, and consistent-image locality, operationalized through seven distinct data types, enabling a detailed and structured analysis of multimodal edits. We introduce De-VQA, a dynamic evaluation for visual question answering, uncovering a phenomenon we term transient blindness, overfitting to edit-similar text while ignoring visuals. Token analysis shows edits disproportionately affect textual tokens. We propose locality-aware adversarial losses to balance cross-modal representations. Empirical results demonstrate that our approach consistently outperforms existing baselines, reducing transient blindness and improving locality by 17% on average.
Abstract:Driven by vast and diverse textual data, large language models (LLMs) have demonstrated impressive performance across numerous natural language processing (NLP) tasks. Yet, a critical question persists: does their generalization arise from mere memorization of training data or from deep semantic understanding? To investigate this, we propose a bi-perspective evaluation framework to assess LLMs' scenario cognition - the ability to link semantic scenario elements with their arguments in context. Specifically, we introduce a novel scenario-based dataset comprising diverse textual descriptions of fictional facts, annotated with scenario elements. LLMs are evaluated through their capacity to answer scenario-related questions (model output perspective) and via probing their internal representations for encoded scenario elements-argument associations (internal representation perspective). Our experiments reveal that current LLMs predominantly rely on superficial memorization, failing to achieve robust semantic scenario cognition, even in simple cases. These findings expose critical limitations in LLMs' semantic understanding and offer cognitive insights for advancing their capabilities.