Abstract:Chain-of-Thought (CoT) has unlocked advanced reasoning abilities of Large Language Models (LLMs) with intermediate steps, yet incurs prohibitive computational costs due to generation of extra tokens. Recent studies empirically show that compressing reasoning steps into latent states, or implicit CoT compression, offers a token-efficient alternative. However, the mechanism behind CoT compression remains unclear. In this paper, we provide the first theoretical analysis of the difficulty of learning to internalize intermediate reasoning steps. By introducing Order-r Interaction, we prove that the learning signal for high-order logical dependencies exponentially decays to solve irreducible problem, where skipping intermediate steps inevitably leads to high-order interaction barriers. To empirically validate this, we introduce NatBool-DAG, a challenging benchmark designed to enforce irreducible logical reasoning and eliminate semantic shortcuts. Guided by our theoretical findings, we propose ALiCoT (Aligned Implicit CoT), a novel framework that overcomes the signal decay by aligning latent token distributions with intermediate reasoning states. Experimental results demonstrate that ALiCoT successfully unlocks efficient reasoning: it achieves a 54.4x speedup while maintaining performance comparable to explicit CoT.
Abstract:Driven by vast and diverse textual data, large language models (LLMs) have demonstrated impressive performance across numerous natural language processing (NLP) tasks. Yet, a critical question persists: does their generalization arise from mere memorization of training data or from deep semantic understanding? To investigate this, we propose a bi-perspective evaluation framework to assess LLMs' scenario cognition - the ability to link semantic scenario elements with their arguments in context. Specifically, we introduce a novel scenario-based dataset comprising diverse textual descriptions of fictional facts, annotated with scenario elements. LLMs are evaluated through their capacity to answer scenario-related questions (model output perspective) and via probing their internal representations for encoded scenario elements-argument associations (internal representation perspective). Our experiments reveal that current LLMs predominantly rely on superficial memorization, failing to achieve robust semantic scenario cognition, even in simple cases. These findings expose critical limitations in LLMs' semantic understanding and offer cognitive insights for advancing their capabilities.