Abstract:Multi-object editing aims to modify multiple objects or regions in complex scenes while preserving structural coherence. This task faces significant challenges in scenarios involving overlapping or interacting objects: (1) Inaccurate localization of target objects due to attention misalignment, leading to incomplete or misplaced edits; (2) Attribute-object mismatch, where color or texture changes fail to align with intended regions due to cross-attention leakage, creating semantic conflicts (\textit{e.g.}, color bleeding into non-target areas). Existing methods struggle with these challenges: approaches relying on global cross-attention mechanisms suffer from attention dilution and spatial interference between objects, while mask-based methods fail to bind attributes to geometrically accurate regions due to feature entanglement in multi-object scenarios. To address these limitations, we propose a training-free, inference-stage optimization approach that enables precise localized image manipulation in complex multi-object scenes, named MDE-Edit. MDE-Edit optimizes the noise latent feature in diffusion models via two key losses: Object Alignment Loss (OAL) aligns multi-layer cross-attention with segmentation masks for precise object positioning, and Color Consistency Loss (CCL) amplifies target attribute attention within masks while suppressing leakage to adjacent regions. This dual-loss design ensures localized and coherent multi-object edits. Extensive experiments demonstrate that MDE-Edit outperforms state-of-the-art methods in editing accuracy and visual quality, offering a robust solution for complex multi-object image manipulation tasks.
Abstract:Ring artifacts in computed tomography images, arising from the undesirable responses of detector units, significantly degrade image quality and diagnostic reliability. To address this challenge, we propose a dual-domain regularization model to effectively remove ring artifacts, while maintaining the integrity of the original CT image. The proposed model corrects the vertical stripe artifacts on the sinogram by innovatively updating the response inconsistency compensation coefficients of detector units, which is achieved by employing the group sparse constraint and the projection-view direction sparse constraint on the stripe artifacts. Simultaneously, we apply the sparse constraint on the reconstructed image to further rectified ring artifacts in the image domain. The key advantage of the proposed method lies in considering the relationship between the response inconsistency compensation coefficients of the detector units and the projection views, which enables a more accurate correction of the response of the detector units. An alternating minimization method is designed to solve the model. Comparative experiments on real photon counting detector data demonstrate that the proposed method not only surpasses existing methods in removing ring artifacts but also excels in preserving structural details and image fidelity.