Abstract:All-in-one image restoration aims to recover clean images from diverse unknown degradations using a single model. But extending this task to videos faces unique challenges. Existing approaches primarily focus on frame-wise degradation variation, overlooking the temporal continuity that naturally exists in real-world degradation processes. In practice, degradation types and intensities evolve smoothly over time, and multiple degradations may coexist or transition gradually. In this paper, we introduce the Smoothly Evolving Unknown Degradations (SEUD) scenario, where both the active degradation set and degradation intensity change continuously over time. To support this scenario, we design a flexible synthesis pipeline that generates temporally coherent videos with single, compound, and evolving degradations. To address the challenges in the SEUD scenario, we propose an all-in-One Recurrent Conditional and Adaptive prompting Network (ORCANet). First, a Coarse Intensity Estimation Dehazing (CIED) module estimates haze intensity using physical priors and provides coarse dehazed features as initialization. Second, a Flow Prompt Generation (FPG) module extracts degradation features. FPG generates both static prompts that capture segment-level degradation types and dynamic prompts that adapt to frame-level intensity variations. Furthermore, a label-aware supervision mechanism improves the discriminability of static prompt representations under different degradations. Extensive experiments show that ORCANet achieves superior restoration quality, temporal consistency, and robustness over image and video-based baselines. Code is available at https://github.com/Friskknight/ORCANet-SEUD.




Abstract:Multimodal learning aims to improve performance by leveraging data from multiple sources. During joint multimodal training, due to modality bias, the advantaged modality often dominates backpropagation, leading to imbalanced optimization. Existing methods still face two problems: First, the long-term dominance of the dominant modality weakens representation-output coupling in the late stages of training, resulting in the accumulation of redundant information. Second, previous methods often directly and uniformly adjust the gradients of the advantaged modality, ignoring the semantics and directionality between modalities. To address these limitations, we propose Adaptive Redundancy Regulation for Balanced Multimodal Information Refinement (RedReg), which is inspired by information bottleneck principle. Specifically, we construct a redundancy phase monitor that uses a joint criterion of effective gain growth rate and redundancy to trigger intervention only when redundancy is high. Furthermore, we design a co-information gating mechanism to estimate the contribution of the current dominant modality based on cross-modal semantics. When the task primarily relies on a single modality, the suppression term is automatically disabled to preserve modality-specific information. Finally, we project the gradient of the dominant modality onto the orthogonal complement of the joint multimodal gradient subspace and suppress the gradient according to redundancy. Experiments show that our method demonstrates superiority among current major methods in most scenarios. Ablation experiments verify the effectiveness of our method. The code is available at https://github.com/xia-zhe/RedReg.git