Abstract:Multi-view video reconstruction plays a vital role in computer vision, enabling applications in film production, virtual reality, and motion analysis. While recent advances such as 4D Gaussian Splatting (4DGS) have demonstrated impressive capabilities in dynamic scene reconstruction, they typically rely on the assumption that input video streams are temporally synchronized. However, in real-world scenarios, this assumption often fails due to factors like camera trigger delays or independent recording setups, leading to temporal misalignment across views and reduced reconstruction quality. To address this challenge, a novel temporal alignment strategy is proposed for high-quality 4DGS reconstruction from unsynchronized multi-view videos. Our method features a coarse-to-fine alignment module that estimates and compensates for each camera's time shift. The method first determines a coarse, frame-level offset and then refines it to achieve sub-frame accuracy. This strategy can be integrated as a readily integrable module into existing 4DGS frameworks, enhancing their robustness when handling asynchronous data. Experiments show that our approach effectively processes temporally misaligned videos and significantly enhances baseline methods.
Abstract:The widespread use of vector graphics creates a significant demand for vectorization methods. While recent learning-based techniques have shown their capability to create vector images of clear topology, filling these primitives with gradients remains a challenge. In this paper, we propose a segmentation-guided vectorization framework to convert raster images into concise vector graphics with radial gradient fills. With the guidance of an embedded gradient-aware segmentation subroutine, our approach progressively appends gradient-filled B\'ezier paths to the output, where primitive parameters are initiated with our newly designed initialization technique and are optimized to minimize our novel loss function. We build our method on a differentiable renderer with traditional segmentation algorithms to develop it as a model-free tool for raster-to-vector conversion. It is tested on various inputs to demonstrate its feasibility, independent of datasets, to synthesize vector graphics with improved visual quality and layer-wise topology compared to prior work.