Abstract:Recent advances in video generation techniques have given rise to an emerging paradigm of generative video coding, aiming to achieve semantically accurate reconstructions in Ultra-Low Bitrate (ULB) scenarios by leveraging strong generative priors. However, most existing methods are limited by domain specificity (e.g., facial or human videos) or an excessive dependence on high-level text guidance, which often fails to capture motion details and results in unrealistic reconstructions. To address these challenges, we propose a Trajectory-Guided Generative Video Coding framework (dubbed T-GVC). T-GVC employs a semantic-aware sparse motion sampling pipeline to effectively bridge low-level motion tracking with high-level semantic understanding by extracting pixel-wise motion as sparse trajectory points based on their semantic importance, not only significantly reducing the bitrate but also preserving critical temporal semantic information. In addition, by incorporating trajectory-aligned loss constraints into diffusion processes, we introduce a training-free latent space guidance mechanism to ensure physically plausible motion patterns without sacrificing the inherent capabilities of generative models. Experimental results demonstrate that our framework outperforms both traditional codecs and state-of-the-art end-to-end video compression methods under ULB conditions. Furthermore, additional experiments confirm that our approach achieves more precise motion control than existing text-guided methods, paving the way for a novel direction of generative video coding guided by geometric motion modeling.
Abstract:Reconstructing desired objects and scenes has long been a primary goal in 3D computer vision. Single-view point cloud reconstruction has become a popular technique due to its low cost and accurate results. However, single-view reconstruction methods often rely on expensive CAD models and complex geometric priors. Effectively utilizing prior knowledge about the data remains a challenge. In this paper, we introduce hyperbolic space to 3D point cloud reconstruction, enabling the model to represent and understand complex hierarchical structures in point clouds with low distortion. We build upon previous methods by proposing a hyperbolic Chamfer distance and a regularized triplet loss to enhance the relationship between partial and complete point clouds. Additionally, we design adaptive boundary conditions to improve the model's understanding and reconstruction of 3D structures. Our model outperforms most existing models, and ablation studies demonstrate the significance of our model and its components. Experimental results show that our method significantly improves feature extraction capabilities. Our model achieves outstanding performance in 3D reconstruction tasks.