Abstract:Generative AI (GenAI) is rapidly advancing the field of Autonomous Driving (AD), extending beyond traditional applications in text, image, and video generation. We explore how generative models can enhance automotive tasks, such as static map creation, dynamic scenario generation, trajectory forecasting, and vehicle motion planning. By examining multiple generative approaches ranging from Variational Autoencoder (VAEs) over Generative Adversarial Networks (GANs) and Invertible Neural Networks (INNs) to Generative Transformers (GTs) and Diffusion Models (DMs), we highlight and compare their capabilities and limitations for AD-specific applications. Additionally, we discuss hybrid methods integrating conventional techniques with generative approaches, and emphasize their improved adaptability and robustness. We also identify relevant datasets and outline open research questions to guide future developments in GenAI. Finally, we discuss three core challenges: safety, interpretability, and realtime capabilities, and present recommendations for image generation, dynamic scenario generation, and planning.
Abstract:Motion prediction plays an important role in autonomous driving. This study presents LMFormer, a lane-aware transformer network for trajectory prediction tasks. In contrast to previous studies, our work provides a simple mechanism to dynamically prioritize the lanes and shows that such a mechanism introduces explainability into the learning behavior of the network. Additionally, LMFormer uses the lane connection information at intersections, lane merges, and lane splits, in order to learn long-range dependency in lane structure. Moreover, we also address the issue of refining the predicted trajectories and propose an efficient method for iterative refinement through stacked transformer layers. For benchmarking, we evaluate LMFormer on the nuScenes dataset and demonstrate that it achieves SOTA performance across multiple metrics. Furthermore, the Deep Scenario dataset is used to not only illustrate cross-dataset network performance but also the unification capabilities of LMFormer to train on multiple datasets and achieve better performance.
Abstract:Motion prediction is an important aspect for Autonomous Driving (AD) and Advance Driver Assistance Systems (ADAS). Current state-of-the-art motion prediction methods rely on High Definition (HD) maps for capturing the surrounding context of the ego vehicle. Such systems lack scalability in real-world deployment as HD maps are expensive to produce and update in real-time. To overcome this issue, we propose Context Aware Scene Prediction Transformer (CASPFormer), which can perform multi-modal motion prediction from rasterized Bird-Eye-View (BEV) images. Our system can be integrated with any upstream perception module that is capable of generating BEV images. Moreover, CASPFormer directly decodes vectorized trajectories without any postprocessing. Trajectories are decoded recurrently using deformable attention, as it is computationally efficient and provides the network with the ability to focus its attention on the important spatial locations of the BEV images. In addition, we also address the issue of mode collapse for generating multiple scene-consistent trajectories by incorporating learnable mode queries. We evaluate our model on the nuScenes dataset and show that it reaches state-of-the-art across multiple metrics