Abstract:Graphical user interface (GUI) agents powered by multimodal large language models (MLLMs) have shown greater promise for human-interaction. However, due to the high fine-tuning cost, users often rely on open-source GUI agents or APIs offered by AI providers, which introduces a critical but underexplored supply chain threat: backdoor attacks. In this work, we first unveil that MLLM-powered GUI agents naturally expose multiple interaction-level triggers, such as historical steps, environment states, and task progress. Based on this observation, we introduce AgentGhost, an effective and stealthy framework for red-teaming backdoor attacks. Specifically, we first construct composite triggers by combining goal and interaction levels, allowing GUI agents to unintentionally activate backdoors while ensuring task utility. Then, we formulate backdoor injection as a Min-Max optimization problem that uses supervised contrastive learning to maximize the feature difference across sample classes at the representation space, improving flexibility of the backdoor. Meanwhile, it adopts supervised fine-tuning to minimize the discrepancy between backdoor and clean behavior generation, enhancing effectiveness and utility. Extensive evaluations of various agent models in two established mobile benchmarks show that AgentGhost is effective and generic, with attack accuracy that reaches 99.7\% on three attack objectives, and shows stealthiness with only 1\% utility degradation. Furthermore, we tailor a defense method against AgentGhost that reduces the attack accuracy to 22.1\%. Our code is available at \texttt{anonymous}.
Abstract:Enterprises possess a vast array of API assets scattered across various functions, forming the backbone of existing business processes. By leveraging these APIs as functional tools, enterprises can design diverse, scenario-specific agent applications, driven by on-premise function-calling models as the core engine. However, generic models often fail to meet enterprise requirements in terms of computational efficiency, output accuracy, and stability, necessitating scenario-specific adaptation. In this paper, we propose a training pipeline for function-calling capabilities tailored to real-world business scenarios. This pipeline includes the synthesis and augmentation of scenario-specific function-calling data, model fine-tuning, and performance evaluation and analysis. Using this pipeline, we generated 1,260 fully AI-generated samples and 1,035 augmented manually-labeled samples in digital HR agent scenario. The Qwen2.5-Coder-7B-Instruct model was employed as the base model and fine-tuned using the LoRA method on four GPUs with 24GB VRAM. Our fine-tuned model demonstrated outstanding performance in evaluations and practical applications, surpassing GPT-4 and GPT-4o in accuracy on the test set. These results validate the reliability of the proposed pipeline for training scenario-specific function-calling models.