Abstract:Vision-and-Language Navigation (VLN) tasks mainly evaluate agents based on one-time execution of individual instructions across multiple environments, aiming to develop agents capable of functioning in any environment in a zero-shot manner. However, real-world navigation robots often operate in persistent environments with relatively consistent physical layouts, visual observations, and language styles from instructors. Such a gap in the task setting presents an opportunity to improve VLN agents by incorporating continuous adaptation to specific environments. To better reflect these real-world conditions, we introduce GSA-VLN, a novel task requiring agents to execute navigation instructions within a specific scene and simultaneously adapt to it for improved performance over time. To evaluate the proposed task, one has to address two challenges in existing VLN datasets: the lack of OOD data, and the limited number and style diversity of instructions for each scene. Therefore, we propose a new dataset, GSA-R2R, which significantly expands the diversity and quantity of environments and instructions for the R2R dataset to evaluate agent adaptability in both ID and OOD contexts. Furthermore, we design a three-stage instruction orchestration pipeline that leverages LLMs to refine speaker-generated instructions and apply role-playing techniques to rephrase instructions into different speaking styles. This is motivated by the observation that each individual user often has consistent signatures or preferences in their instructions. We conducted extensive experiments on GSA-R2R to thoroughly evaluate our dataset and benchmark various methods. Based on our findings, we propose a novel method, GR-DUET, which incorporates memory-based navigation graphs with an environment-specific training strategy, achieving state-of-the-art results on all GSA-R2R splits.
Abstract:Real-world navigation often involves dealing with unexpected obstructions such as closed doors, moved objects, and unpredictable entities. However, mainstream Vision-and-Language Navigation (VLN) tasks typically assume instructions perfectly align with the fixed and predefined navigation graphs without any obstructions. This assumption overlooks potential discrepancies in actual navigation graphs and given instructions, which can cause major failures for both indoor and outdoor agents. To address this issue, we integrate diverse obstructions into the R2R dataset by modifying both the navigation graphs and visual observations, introducing an innovative dataset and task, R2R with UNexpected Obstructions (R2R-UNO). R2R-UNO contains various types and numbers of path obstructions to generate instruction-reality mismatches for VLN research. Experiments on R2R-UNO reveal that state-of-the-art VLN methods inevitably encounter significant challenges when facing such mismatches, indicating that they rigidly follow instructions rather than navigate adaptively. Therefore, we propose a novel method called ObVLN (Obstructed VLN), which includes a curriculum training strategy and virtual graph construction to help agents effectively adapt to obstructed environments. Empirical results show that ObVLN not only maintains robust performance in unobstructed scenarios but also achieves a substantial performance advantage with unexpected obstructions.
Abstract:Current Vision-and-Language Navigation (VLN) tasks mainly employ textual instructions to guide agents. However, being inherently abstract, the same textual instruction can be associated with different visual signals, causing severe ambiguity and limiting the transfer of prior knowledge in the vision domain from the user to the agent. To fill this gap, we propose Vision-and-Language Navigation with Multi-modal Prompts (VLN-MP), a novel task augmenting traditional VLN by integrating both natural language and images in instructions. VLN-MP not only maintains backward compatibility by effectively handling text-only prompts but also consistently shows advantages with different quantities and relevance of visual prompts. Possible forms of visual prompts include both exact and similar object images, providing adaptability and versatility in diverse navigation scenarios. To evaluate VLN-MP under a unified framework, we implement a new benchmark that offers: (1) a training-free pipeline to transform textual instructions into multi-modal forms with landmark images; (2) diverse datasets with multi-modal instructions for different downstream tasks; (3) a novel module designed to process various image prompts for seamless integration with state-of-the-art VLN models. Extensive experiments on four VLN benchmarks (R2R, RxR, REVERIE, CVDN) show that incorporating visual prompts significantly boosts navigation performance. While maintaining efficiency with text-only prompts, VLN-MP enables agents to navigate in the pre-explore setting and outperform text-based models, showing its broader applicability.