Abstract:Dynamic energy systems and controls require advanced modeling frameworks to design and test supervisory and fault tolerant strategies. Modelica is a widely used equation based language, but developing control modules is labor intensive and requires specialized expertise. This paper examines the use of large language models (LLMs) to automate the generation of Control Description Language modules in the Building Modelica Library as a case study. We developed a structured workflow that combines standardized prompt scaffolds, library aware grounding, automated compilation with OpenModelica, and human in the loop evaluation. Experiments were carried out on four basic logic tasks (And, Or, Not, and Switch) and five control modules (chiller enable/disable, bypass valve control, cooling tower fan speed, plant requests, and relief damper control). The results showed that GPT 4o failed to produce executable Modelica code in zero shot mode, while Claude Sonnet 4 achieved up to full success for basic logic blocks with carefully engineered prompts. For control modules, success rates reached 83 percent, and failed outputs required medium level human repair (estimated one to eight hours). Retrieval augmented generation often produced mismatches in module selection (for example, And retrieved as Or), while a deterministic hard rule search strategy avoided these errors. Human evaluation also outperformed AI evaluation, since current LLMs cannot assess simulation results or validate behavioral correctness. Despite these limitations, the LLM assisted workflow reduced the average development time from 10 to 20 hours down to 4 to 6 hours per module, corresponding to 40 to 60 percent time savings. These results highlight both the potential and current limitations of LLM assisted Modelica generation, and point to future research in pre simulation validation, stronger grounding, and closed loop evaluation.
Abstract:This paper investigates the transformative potential of generative AI technologies, particularly large language models (LLMs), within the building industry. By leveraging these advanced AI tools, the study explores their application across key areas such as energy code compliance, building design optimization, and workforce training. The research highlights how LLMs can automate labor-intensive processes, significantly improving efficiency, accuracy, and safety in building practices. The paper also addresses the challenges associated with interpreting complex visual and textual data in architectural plans and regulatory codes, proposing innovative solutions to enhance AI-driven compliance checking and design processes. Additionally, the study considers the broader implications of AI integration, including the development of AI-powered tools for comprehensive code compliance across various regulatory domains and the potential for AI to revolutionize workforce training through realistic simulations. This paper provides a comprehensive analysis of the current capabilities of generative AI in the building industry while outlining future directions for research and development, aiming to pave the way for smarter, more sustainable, and responsive construction practices.