Abstract:Voice cloning (VC)-resistant watermarking is an emerging technique for tracing and preventing unauthorized cloning. Existing methods effectively trace traditional VC models by training them on watermarked audio but fail in zero-shot VC scenarios, where models synthesize audio from an audio prompt without training. To address this, we propose VoiceMark, the first zero-shot VC-resistant watermarking method that leverages speaker-specific latents as the watermark carrier, allowing the watermark to transfer through the zero-shot VC process into the synthesized audio. Additionally, we introduce VC-simulated augmentations and VAD-based loss to enhance robustness against distortions. Experiments on multiple zero-shot VC models demonstrate that VoiceMark achieves over 95% accuracy in watermark detection after zero-shot VC synthesis, significantly outperforming existing methods, which only reach around 50%. See our code and demos at: https://huggingface.co/spaces/haiyunli/VoiceMark
Abstract:Aspect-based Sentiment Analysis (ABSA) is an important sentiment analysis task, which aims to determine the sentiment polarity towards an aspect in a sentence. Due to the expensive and limited labeled data, data augmentation (DA) has become the standard for improving the performance of ABSA. However, current DA methods usually have some shortcomings: 1) poor fluency and coherence, 2) lack of diversity of generated data, and 3) reliance on some existing labeled data, hindering its applications in real-world scenarios. In response to these problems, we propose a systematic Iterative Data augmentation framework, namely IterD, to boost the performance of ABSA. The core of IterD is to leverage the powerful ability of large language models (LLMs) to iteratively generate more fluent and diverse synthetic labeled data, starting from an unsupervised sentence corpus. Extensive experiments on 4 widely-used ABSA benchmarks show that IterD brings consistent and significant performance gains among 5 baseline ABSA models. More encouragingly, the synthetic data generated by IterD can achieve comparable or even better performance against the manually annotated data.