Abstract:Generative models, particularly diffusion-based text-to-image (T2I) models, have demonstrated astounding success. However, aligning them to avoid generating content with unacceptable concepts (e.g., offensive or copyrighted content, or celebrity likenesses) remains a significant challenge. Concept replacement techniques (CRTs) aim to address this challenge, often by trying to "erase" unacceptable concepts from models. Recently, model providers have started offering image editing services which accept an image and a text prompt as input, to produce an image altered as specified by the prompt. These are known as image-to-image (I2I) models. In this paper, we first use an I2I model to empirically demonstrate that today's state-of-the-art CRTs do not in fact erase unacceptable concepts. Existing CRTs are thus likely to be ineffective in emerging I2I scenarios, despite their proven ability to remove unwanted concepts in T2I pipelines, highlighting the need to understand this discrepancy between T2I and I2I settings. Next, we argue that a good CRT, while replacing unacceptable concepts, should preserve other concepts specified in the inputs to generative models. We call this fidelity. Prior work on CRTs have neglected fidelity in the case of unacceptable concepts. Finally, we propose the use of targeted image-editing techniques to achieve both effectiveness and fidelity. We present such a technique, AntiMirror, and demonstrate its viability.
Abstract:Artificial Intelligence has become a double edged sword in modern society being both a boon and a bane. While it empowers individuals it also enables malicious actors to perpetrate scams such as fraudulent phone calls and user impersonations. This growing threat necessitates a robust system to protect individuals In this paper we introduce a novel real time fraud detection mechanism using Retrieval Augmented Generation technology to address this challenge on two fronts. First our system incorporates a continuously updating policy checking feature that transcribes phone calls in real time and uses RAG based models to verify that the caller is not soliciting private information thus ensuring transparency and the authenticity of the conversation. Second we implement a real time user impersonation check with a two step verification process to confirm the callers identity ensuring accountability. A key innovation of our system is the ability to update policies without retraining the entire model enhancing its adaptability. We validated our RAG based approach using synthetic call recordings achieving an accuracy of 97.98 percent and an F1score of 97.44 percent with 100 calls outperforming state of the art methods. This robust and flexible fraud detection system is well suited for real world deployment.