Abstract:Attention mechanisms have become integral in AI, significantly enhancing model performance and scalability by drawing inspiration from human cognition. Concurrently, the Attention Schema Theory (AST) in cognitive science posits that individuals manage their attention by creating a model of the attention itself, effectively allocating cognitive resources. Inspired by AST, we introduce ASAC (Attention Schema-based Attention Control), which integrates the attention schema concept into artificial neural networks. Our initial experiments focused on embedding the ASAC module within transformer architectures. This module employs a Vector-Quantized Variational AutoEncoder (VQVAE) as both an attention abstractor and controller, facilitating precise attention management. By explicitly modeling attention allocation, our approach aims to enhance system efficiency. We demonstrate ASAC's effectiveness in both the vision and NLP domains, highlighting its ability to improve classification accuracy and expedite the learning process. Our experiments with vision transformers across various datasets illustrate that the attention controller not only boosts classification accuracy but also accelerates learning. Furthermore, we have demonstrated the model's robustness and generalization capabilities across noisy and out-of-distribution datasets. In addition, we have showcased improved performance in multi-task settings. Quick experiments reveal that the attention schema-based module enhances resilience to adversarial attacks, optimizes attention to improve learning efficiency, and facilitates effective transfer learning and learning from fewer examples. These promising results establish a connection between cognitive science and machine learning, shedding light on the efficient utilization of attention mechanisms in AI systems.
Abstract:Consciousness has been historically a heavily debated topic in engineering, science, and philosophy. On the contrary, awareness had less success in raising the interest of scholars in the past. However, things are changing as more and more researchers are getting interested in answering questions concerning what awareness is and how it can be artificially generated. The landscape is rapidly evolving, with multiple voices and interpretations of the concept being conceived and techniques being developed. The goal of this paper is to summarize and discuss the ones among these voices connected with projects funded by the EIC Pathfinder Challenge called ``Awareness Inside'', a nonrecurring call for proposals within Horizon Europe designed specifically for fostering research on natural and synthetic awareness. In this perspective, we dedicate special attention to challenges and promises of applying synthetic awareness in robotics, as the development of mature techniques in this new field is expected to have a special impact on generating more capable and trustworthy embodied systems.