Get our free extension to see links to code for papers anywhere online!Free add-on: code for papers everywhere!Free add-on: See code for papers anywhere!

Figures and Tables:

Abstract:Many fundamental problems in machine learning can be formulated by the convex program \[ \min_{\theta\in R^d}\ \sum_{i=1}^{n}f_{i}(\theta), \] where each $f_i$ is a convex, Lipschitz function supported on a subset of $d_i$ coordinates of $\theta$. One common approach to this problem, exemplified by stochastic gradient descent, involves sampling one $f_i$ term at every iteration to make progress. This approach crucially relies on a notion of uniformity across the $f_i$'s, formally captured by their condition number. In this work, we give an algorithm that minimizes the above convex formulation to $\epsilon$-accuracy in $\widetilde{O}(\sum_{i=1}^n d_i \log (1 /\epsilon))$ gradient computations, with no assumptions on the condition number. The previous best algorithm independent of the condition number is the standard cutting plane method, which requires $O(nd \log (1/\epsilon))$ gradient computations. As a corollary, we improve upon the evaluation oracle complexity for decomposable submodular minimization by Axiotis et al. (ICML 2021). Our main technical contribution is an adaptive procedure to select an $f_i$ term at every iteration via a novel combination of cutting-plane and interior-point methods.

Via

Abstract:Robust covariance estimation is the following, well-studied problem in high dimensional statistics: given $N$ samples from a $d$-dimensional Gaussian $\mathcal{N}(\boldsymbol{0}, \Sigma)$, but where an $\varepsilon$-fraction of the samples have been arbitrarily corrupted, output $\widehat{\Sigma}$ minimizing the total variation distance between $\mathcal{N}(\boldsymbol{0}, \Sigma)$ and $\mathcal{N}(\boldsymbol{0}, \widehat{\Sigma})$. This corresponds to learning $\Sigma$ in a natural affine-invariant variant of the Frobenius norm known as the \emph{Mahalanobis norm}. Previous work of Cheng et al demonstrated an algorithm that, given $N = \Omega (d^2 / \varepsilon^2)$ samples, achieved a near-optimal error of $O(\varepsilon \log 1 / \varepsilon)$, and moreover, their algorithm ran in time $\widetilde{O}(T(N, d) \log \kappa / \mathrm{poly} (\varepsilon))$, where $T(N, d)$ is the time it takes to multiply a $d \times N$ matrix by its transpose, and $\kappa$ is the condition number of $\Sigma$. When $\varepsilon$ is relatively small, their polynomial dependence on $1/\varepsilon$ in the runtime is prohibitively large. In this paper, we demonstrate a novel algorithm that achieves the same statistical guarantees, but which runs in time $\widetilde{O} (T(N, d) \log \kappa)$. In particular, our runtime has no dependence on $\varepsilon$. When $\Sigma$ is reasonably conditioned, our runtime matches that of the fastest algorithm for covariance estimation without outliers, up to poly-logarithmic factors, showing that we can get robustness essentially "for free."

Via