Abstract:Federated unlearning (FU) algorithms allow clients in federated settings to exercise their ''right to be forgotten'' by removing the influence of their data from a collaboratively trained model. Existing FU methods maintain data privacy by performing unlearning locally on the client-side and sending targeted updates to the server without exposing forgotten data; yet they often rely on server-side cooperation, revealing the client's intent and identity without enforcement guarantees - compromising autonomy and unlearning privacy. In this work, we propose EFU (Enforced Federated Unlearning), a cryptographically enforced FU framework that enables clients to initiate unlearning while concealing its occurrence from the server. Specifically, EFU leverages functional encryption to bind encrypted updates to specific aggregation functions, ensuring the server can neither perform unauthorized computations nor detect or skip unlearning requests. To further mask behavioral and parameter shifts in the aggregated model, we incorporate auxiliary unlearning losses based on adversarial examples and parameter importance regularization. Extensive experiments show that EFU achieves near-random accuracy on forgotten data while maintaining performance comparable to full retraining across datasets and neural architectures - all while concealing unlearning intent from the server. Furthermore, we demonstrate that EFU is agnostic to the underlying unlearning algorithm, enabling secure, function-hiding, and verifiable unlearning for any client-side FU mechanism that issues targeted updates.
Abstract:Device heterogeneity poses major challenges in Federated Learning (FL), where resource-constrained clients slow down synchronous schemes that wait for all updates before aggregation. Asynchronous FL addresses this by incorporating updates as they arrive, substantially improving efficiency. While its efficiency gains are well recognized, its privacy costs remain largely unexplored, particularly for high-end devices that contribute updates more frequently, increasing their cumulative privacy exposure. This paper presents the first comprehensive analysis of the efficiency-fairness-privacy trade-off in synchronous vs. asynchronous FL under realistic device heterogeneity. We empirically compare FedAvg and staleness-aware FedAsync using a physical testbed of five edge devices spanning diverse hardware tiers, integrating Local Differential Privacy (LDP) and the Moments Accountant to quantify per-client privacy loss. Using Speech Emotion Recognition (SER) as a privacy-critical benchmark, we show that FedAsync achieves up to 10x faster convergence but exacerbates fairness and privacy disparities: high-end devices contribute 6-10x more updates and incur up to 5x higher privacy loss, while low-end devices suffer amplified accuracy degradation due to infrequent, stale, and noise-perturbed updates. These findings motivate the need for adaptive FL protocols that jointly optimize aggregation and privacy mechanisms based on client capacity and participation dynamics, moving beyond static, one-size-fits-all solutions.
Abstract:Federated Learning (FL) enables model training across decentralized devices by communicating solely local model updates to an aggregation server. Although such limited data sharing makes FL more secure than centralized approached, FL remains vulnerable to inference attacks during model update transmissions. Existing secure aggregation approaches rely on differential privacy or cryptographic schemes like Functional Encryption (FE) to safeguard individual client data. However, such strategies can reduce performance or introduce unacceptable computational and communication overheads on clients running on edge devices with limited resources. In this work, we present EncCluster, a novel method that integrates model compression through weight clustering with recent decentralized FE and privacy-enhancing data encoding using probabilistic filters to deliver strong privacy guarantees in FL without affecting model performance or adding unnecessary burdens to clients. We performed a comprehensive evaluation, spanning various datasets and architectures, to demonstrate EncCluster's scalability across encryption levels. Our findings reveal that EncCluster significantly reduces communication costs - below even conventional FedAvg - and accelerates encryption by more than four times over all baselines; at the same time, it maintains high model accuracy and enhanced privacy assurances.
Abstract:Safe road-crossing by self-driving vehicles is a crucial problem to address in smart-cities. In this paper, we introduce a multi-sensor fusion approach to support road-crossing decisions in a system composed by an autonomous wheelchair and a flying drone featuring a robust sensory system made of diverse and redundant components. To that aim, we designed an analytical danger function based on explainable physical conditions evaluated by single sensors, including those using machine learning and artificial vision. As a proof-of-concept, we provide an experimental evaluation in a laboratory environment, showing the advantages of using multiple sensors, which can improve decision accuracy and effectively support safety assessment. We made the dataset available to the scientific community for further experimentation. The work has been developed in the context of an European project named REXASI-PRO, which aims to develop trustworthy artificial intelligence for social navigation of people with reduced mobility.
Abstract:The current article is an interdisciplinary attempt to decipher automatic program repair processes. The review is done by the manner typical to human science known as diffraction. We attempt to spot a gap in the literature of self-healing and self-repair operations and further investigate the approaches that would enable us to tackle the problems we face. As a conclusion, we suggest a shift in the current approach to automatic program repair operations in order to attain our goals. The emphasis of this review is to achieve full automation. Several obstacles are shortly mentioned in the current essay but the main shortage that is covered is the overfitting obstacle, and this particular problem is investigated in the stream that is related to full automation of the repair process.