Abstract:Federated unlearning (FU) algorithms allow clients in federated settings to exercise their ''right to be forgotten'' by removing the influence of their data from a collaboratively trained model. Existing FU methods maintain data privacy by performing unlearning locally on the client-side and sending targeted updates to the server without exposing forgotten data; yet they often rely on server-side cooperation, revealing the client's intent and identity without enforcement guarantees - compromising autonomy and unlearning privacy. In this work, we propose EFU (Enforced Federated Unlearning), a cryptographically enforced FU framework that enables clients to initiate unlearning while concealing its occurrence from the server. Specifically, EFU leverages functional encryption to bind encrypted updates to specific aggregation functions, ensuring the server can neither perform unauthorized computations nor detect or skip unlearning requests. To further mask behavioral and parameter shifts in the aggregated model, we incorporate auxiliary unlearning losses based on adversarial examples and parameter importance regularization. Extensive experiments show that EFU achieves near-random accuracy on forgotten data while maintaining performance comparable to full retraining across datasets and neural architectures - all while concealing unlearning intent from the server. Furthermore, we demonstrate that EFU is agnostic to the underlying unlearning algorithm, enabling secure, function-hiding, and verifiable unlearning for any client-side FU mechanism that issues targeted updates.
Abstract:Device heterogeneity poses major challenges in Federated Learning (FL), where resource-constrained clients slow down synchronous schemes that wait for all updates before aggregation. Asynchronous FL addresses this by incorporating updates as they arrive, substantially improving efficiency. While its efficiency gains are well recognized, its privacy costs remain largely unexplored, particularly for high-end devices that contribute updates more frequently, increasing their cumulative privacy exposure. This paper presents the first comprehensive analysis of the efficiency-fairness-privacy trade-off in synchronous vs. asynchronous FL under realistic device heterogeneity. We empirically compare FedAvg and staleness-aware FedAsync using a physical testbed of five edge devices spanning diverse hardware tiers, integrating Local Differential Privacy (LDP) and the Moments Accountant to quantify per-client privacy loss. Using Speech Emotion Recognition (SER) as a privacy-critical benchmark, we show that FedAsync achieves up to 10x faster convergence but exacerbates fairness and privacy disparities: high-end devices contribute 6-10x more updates and incur up to 5x higher privacy loss, while low-end devices suffer amplified accuracy degradation due to infrequent, stale, and noise-perturbed updates. These findings motivate the need for adaptive FL protocols that jointly optimize aggregation and privacy mechanisms based on client capacity and participation dynamics, moving beyond static, one-size-fits-all solutions.