Abstract:Diffusion models have emerged as powerful generative tools across various domains, yet tailoring pre-trained models to exhibit specific desirable properties remains challenging. While reinforcement learning (RL) offers a promising solution,current methods struggle to simultaneously achieve stable, efficient fine-tuning and support non-differentiable rewards. Furthermore, their reliance on sparse rewards provides inadequate supervision during intermediate steps, often resulting in suboptimal generation quality. To address these limitations, dense and differentiable signals are required throughout the diffusion process. Hence, we propose VAlue-based Reinforced Diffusion (VARD): a novel approach that first learns a value function predicting expection of rewards from intermediate states, and subsequently uses this value function with KL regularization to provide dense supervision throughout the generation process. Our method maintains proximity to the pretrained model while enabling effective and stable training via backpropagation. Experimental results demonstrate that our approach facilitates better trajectory guidance, improves training efficiency and extends the applicability of RL to diffusion models optimized for complex, non-differentiable reward functions.
Abstract:To transfer knowledge from seen attribute-object compositions to recognize unseen ones, recent compositional zero-shot learning (CZSL) methods mainly discuss the optimal classification branches to identify the elements, leading to the popularity of employing a three-branch architecture. However, these methods mix up the underlying relationship among the branches, in the aspect of consistency and diversity. Specifically, consistently providing the highest-level features for all three branches increases the difficulty in distinguishing classes that are superficially similar. Furthermore, a single branch may focus on suboptimal regions when spatial messages are not shared between the personalized branches. Recognizing these issues and endeavoring to address them, we propose a novel method called Focus-Consistent Multi-Level Aggregation (FOMA). Our method incorporates a Multi-Level Feature Aggregation (MFA) module to generate personalized features for each branch based on the image content. Additionally, a Focus-Consistent Constraint encourages a consistent focus on the informative regions, thereby implicitly exchanging spatial information between all branches. Extensive experiments on three benchmark datasets (UT-Zappos, C-GQA, and Clothing16K) demonstrate that our FOMA outperforms SOTA.