Abstract:Collision-free motion planning for redundant robot manipulators in complex environments is yet to be explored. Although recent advancements at the intersection of deep reinforcement learning (DRL) and robotics have highlighted its potential to handle versatile robotic tasks, current DRL-based collision-free motion planners for manipulators are highly costly, hindering their deployment and application. This is due to an overreliance on the minimum distance between the manipulator and obstacles, inadequate exploration and decision-making by DRL, and inefficient data acquisition and utilization. In this article, we propose URPlanner, a universal paradigm for collision-free robotic motion planning based on DRL. URPlanner offers several advantages over existing approaches: it is platform-agnostic, cost-effective in both training and deployment, and applicable to arbitrary manipulators without solving inverse kinematics. To achieve this, we first develop a parameterized task space and a universal obstacle avoidance reward that is independent of minimum distance. Second, we introduce an augmented policy exploration and evaluation algorithm that can be applied to various DRL algorithms to enhance their performance. Third, we propose an expert data diffusion strategy for efficient policy learning, which can produce a large-scale trajectory dataset from only a few expert demonstrations. Finally, the superiority of the proposed methods is comprehensively verified through experiments.
Abstract:The logarithmic spiral is observed as a common pattern in several living beings across kingdoms and species. Some examples include fern shoots, prehensile tails, and soft limbs like octopus arms and elephant trunks. In the latter cases, spiraling is also used for grasping. Motivated by how this strategy simplifies behavior into kinematic primitives and combines them to develop smart grasping movements, this work focuses on the elephant trunk, which is more deeply investigated in the literature. We present a soft arm combined with a rigid robotic system to replicate elephant grasping capabilities based on the combination of a soft trunk with a solid body. In our system, the rigid arm ensures positioning and orientation, mimicking the role of the elephant's head, while the soft manipulator reproduces trunk motion primitives of bending and twisting under proper actuation patterns. This synergy replicates 9 distinct elephant grasping strategies reported in the literature, accommodating objects of varying shapes and sizes. The synergistic interaction between the rigid and soft components of the system minimizes the control complexity while maintaining a high degree of adaptability.