Abstract:The advancement of Document Intelligence (DI) demands large-scale, high-quality training data, yet manual annotation remains a critical bottleneck. While data generation methods are evolving rapidly, existing surveys are constrained by fragmented focuses on single modalities or specific tasks, lacking a unified perspective aligned with real-world workflows. To fill this gap, this survey establishes the first comprehensive technical map for data generation in DI. Data generation is redefined as supervisory signal production, and a novel taxonomy is introduced based on the "availability of data and labels." This framework organizes methodologies into four resource-centric paradigms: Data Augmentation, Data Generation from Scratch, Automated Data Annotation, and Self-Supervised Signal Construction. Furthermore, a multi-level evaluation framework is established to integrate intrinsic quality and extrinsic utility, compiling performance gains across diverse DI benchmarks. Guided by this unified structure, the methodological landscape is dissected to reveal critical challenges such as fidelity gaps and frontiers including co-evolutionary ecosystems. Ultimately, by systematizing this fragmented field, data generation is positioned as the central engine for next-generation DI.
Abstract:Retrieval-Augmented Generation (RAG) systems based on Large Language Models (LLMs) have become essential for tasks such as question answering and content generation. However, their increasing impact on public opinion and information dissemination has made them a critical focus for security research due to inherent vulnerabilities. Previous studies have predominantly addressed attacks targeting factual or single-query manipulations. In this paper, we address a more practical scenario: topic-oriented adversarial opinion manipulation attacks on RAG models, where LLMs are required to reason and synthesize multiple perspectives, rendering them particularly susceptible to systematic knowledge poisoning. Specifically, we propose Topic-FlipRAG, a two-stage manipulation attack pipeline that strategically crafts adversarial perturbations to influence opinions across related queries. This approach combines traditional adversarial ranking attack techniques and leverages the extensive internal relevant knowledge and reasoning capabilities of LLMs to execute semantic-level perturbations. Experiments show that the proposed attacks effectively shift the opinion of the model's outputs on specific topics, significantly impacting user information perception. Current mitigation methods cannot effectively defend against such attacks, highlighting the necessity for enhanced safeguards for RAG systems, and offering crucial insights for LLM security research.