Abstract:A long-standing question in automatic speech recognition research is how to attribute errors to the ability of a model to model the acoustics, versus its ability to leverage higher-order context (lexicon, morphology, syntax, semantics). We validate a novel approach which models error rates as a function of relative textual predictability, and yields a single number, $k$, which measures the effect of textual predictability on the recognizer. We use this method to demonstrate that a Wav2Vec 2.0-based model makes greater stronger use of textual context than a hybrid ASR model, in spite of not using an explicit language model, and also use it to shed light on recent results demonstrating poor performance of standard ASR systems on African-American English. We demonstrate that these mostly represent failures of acoustic--phonetic modelling. We show how this approach can be used straightforwardly in diagnosing and improving ASR.
Abstract:It has been generally assumed in the automatic speech recognition (ASR) literature that it is better for models to have access to wider context windows. Yet, many of the potential reasons this might be true in the supervised setting do not necessarily transfer over to the case of unsupervised learning. We investigate how much context is necessary to achieve high-quality pre-trained acoustic models using self-supervised learning. We principally investigate contrastive predictive coding (CPC), which we adapt to be able to precisely control the amount of context visible to the model during training and inference. We find that phone discriminability in the resulting model representations peaks at around 40~ms of preceding context, and that having too much context (beyond around 320 ms) substantially degrades the quality of the representations. Surprisingly, we find that this pattern also transfers to supervised ASR when the pre-trained representations are used as frozen input features. Our results point to potential changes in the design of current upstream architectures to better facilitate a variety of downstream tasks.
Abstract:We introduce a new zero resource code-switched speech benchmark designed to directly assess the code-switching capabilities of self-supervised speech encoders. We showcase a baseline system of language modeling on discrete units to demonstrate how the code-switching abilities of speech encoders can be assessed in a zero-resource manner. Our experiments encompass a variety of well-known speech encoders, including Wav2vec 2.0, HuBERT, XLSR, etc. We examine the impact of pre-training languages and model size on benchmark performance. Notably, though our results demonstrate that speech encoders with multilingual pre-training, exemplified by XLSR, outperform monolingual variants (Wav2vec 2.0, HuBERT) in code-switching scenarios, there is still substantial room for improvement in their code-switching linguistic abilities.
Abstract:Unsupervised speech representations have taken off, with benchmarks (SUPERB, ZeroSpeech) demonstrating major progress on semi-supervised speech recognition, speech synthesis, and speech-only language modelling. Inspiration comes from the promise of ``discovering the phonemes'' of a language or a similar low-bitrate encoding. However, one of the critical properties of phoneme transcriptions is context-invariance: the phonetic context of a speech sound can have massive influence on the way it is pronounced, while the text remains stable. This is what allows tokens of the same word to have the same transcriptions -- key to language understanding. Current benchmarks do not measure context-invariance. We develop a new version of the ZeroSpeech ABX benchmark that measures context-invariance, and apply it to recent self-supervised representations. We demonstrate that the context-independence of representations is predictive of the stability of word-level representations. We suggest research concentrate on improving context-independence of self-supervised and unsupervised representations.
Abstract:Recent progress in self-supervised or unsupervised machine learning has opened the possibility of building a full speech processing system from raw audio without using any textual representations or expert labels such as phonemes, dictionaries or parse trees. The contribution of the Zero Resource Speech Challenge series since 2015 has been to break down this long-term objective into four well-defined tasks -- Acoustic Unit Discovery, Spoken Term Discovery, Discrete Resynthesis, and Spoken Language Modeling -- and introduce associated metrics and benchmarks enabling model comparison and cumulative progress. We present an overview of the six editions of this challenge series since 2015, discuss the lessons learned, and outline the areas which need more work or give puzzling results.
Abstract:Word or word-fragment based Language Models (LM) are typically preferred over character-based ones in many downstream applications. This may not be surprising as words seem more linguistically relevant units than characters. Words provide at least two kinds of relevant information: boundary information and meaningful units. However, word boundary information may be absent or unreliable in the case of speech input (word boundaries are not marked explicitly in the speech stream). Here, we systematically compare LSTMs as a function of the input unit (character, phoneme, word, word part), with or without gold boundary information. We probe linguistic knowledge in the networks at the lexical, syntactic and semantic levels using three speech-adapted black box NLP psycholinguistically-inpired benchmarks (pWUGGY, pBLIMP, pSIMI). We find that the absence of boundaries costs between 2\% and 28\% in relative performance depending on the task. We show that gold boundaries can be replaced by automatically found ones obtained with an unsupervised segmentation algorithm, and that even modest segmentation performance gives a gain in performance on two of the three tasks compared to basic character/phone based models without boundary information.
Abstract:Several deep neural networks have recently been shown to generate activations similar to those of the brain in response to the same input. These algorithms, however, remain largely implausible: they require (1) extraordinarily large amounts of data, (2) unobtainable supervised labels, (3) textual rather than raw sensory input, and / or (4) implausibly large memory (e.g. thousands of contextual words). These elements highlight the need to identify algorithms that, under these limitations, would suffice to account for both behavioral and brain responses. Focusing on the issue of speech processing, we here hypothesize that self-supervised algorithms trained on the raw waveform constitute a promising candidate. Specifically, we compare a recent self-supervised architecture, Wav2Vec 2.0, to the brain activity of 412 English, French, and Mandarin individuals recorded with functional Magnetic Resonance Imaging (fMRI), while they listened to ~1h of audio books. Our results are four-fold. First, we show that this algorithm learns brain-like representations with as little as 600 hours of unlabelled speech -- a quantity comparable to what infants can be exposed to during language acquisition. Second, its functional hierarchy aligns with the cortical hierarchy of speech processing. Third, different training regimes reveal a functional specialization akin to the cortex: Wav2Vec 2.0 learns sound-generic, speech-specific and language-specific representations similar to those of the prefrontal and temporal cortices. Fourth, we confirm the similarity of this specialization with the behavior of 386 additional participants. These elements, resulting from the largest neuroimaging benchmark to date, show how self-supervised learning can account for a rich organization of speech processing in the brain, and thus delineate a path to identify the laws of language acquisition which shape the human brain.
Abstract:Our native language influences the way we perceive speech sounds, affecting our ability to discriminate non-native sounds. We compare two ideas about the influence of the native language on speech perception: the Perceptual Assimilation Model, which appeals to a mental classification of sounds into native phoneme categories, versus the idea that rich, fine-grained phonetic representations tuned to the statistics of the native language, are sufficient. We operationalize this idea using representations from two state-of-the-art speech models, a Dirichlet process Gaussian mixture model and the more recent wav2vec 2.0 model. We present a new, open dataset of French- and English-speaking participants' speech perception behaviour for 61 vowel sounds from six languages. We show that phoneme assimilation is a better predictor than fine-grained phonetic modelling, both for the discrimination behaviour as a whole, and for predicting differences in discriminability associated with differences in native language background. We also show that wav2vec 2.0, while not good at capturing the effects of native language on speech perception, is complementary to information about native phoneme assimilation, and provides a good model of low-level phonetic representations, supporting the idea that both categorical and fine-grained perception are used during speech perception.
Abstract:Self-supervised models for speech processing form representational spaces without using any external labels. Increasingly, they appear to be a feasible way of at least partially eliminating costly manual annotations, a problem of particular concern for low-resource languages. But what kind of representational spaces do these models construct? Human perception specializes to the sounds of listeners' native languages. Does the same thing happen in self-supervised models? We examine the representational spaces of three kinds of state-of-the-art self-supervised models: wav2vec 2.0, HuBERT and contrastive predictive coding (CPC), and compare them with the perceptual spaces of French-speaking and English-speaking human listeners, both globally and taking account of the behavioural differences between the two language groups. We show that the CPC model shows a small native language effect, but that wav2vec 2.0 and HuBERT seem to develop a universal speech perception space which is not language specific. A comparison against the predictions of supervised phone recognisers suggests that all three self-supervised models capture relatively fine-grained perceptual phenomena, while supervised models are better at capturing coarser, phone-level, effects of listeners' native language, on perception.
Abstract:We present the Zero Resource Speech Challenge 2021, which asks participants to learn a language model directly from audio, without any text or labels. The challenge is based on the Libri-light dataset, which provides up to 60k hours of audio from English audio books without any associated text. We provide a pipeline baseline system consisting on an encoder based on contrastive predictive coding (CPC), a quantizer ($k$-means) and a standard language model (BERT or LSTM). The metrics evaluate the learned representations at the acoustic (ABX discrimination), lexical (spot-the-word), syntactic (acceptability judgment) and semantic levels (similarity judgment). We present an overview of the eight submitted systems from four groups and discuss the main results.