Abstract:Discrete speech tokens offer significant advantages for storage and language model integration, but their application in speech emotion recognition (SER) is limited by paralinguistic information loss during quantization. This paper presents a comprehensive investigation of discrete tokens for SER. Using a fine-tuned WavLM-Large model, we systematically quantify performance degradation across different layer configurations and k-means quantization granularities. To recover the information loss, we propose two key strategies: (1) attention-based multi-layer fusion to recapture complementary information from different layers, and (2) integration of openSMILE features to explicitly reintroduce paralinguistic cues. We also compare mainstream neural codec tokenizers (SpeechTokenizer, DAC, EnCodec) and analyze their behaviors when fused with acoustic features. Our findings demonstrate that through multi-layer fusion and acoustic feature integration, discrete tokens can close the performance gap with continuous representations in SER tasks.




Abstract:Multimodal Large Language Models (MLLMs), such as GPT4o, have shown strong capabilities in visual reasoning and explanation generation. However, despite these strengths, they face significant challenges in the increasingly critical task of Image Forgery Detection and Localization (IFDL). Moreover, existing IFDL methods are typically limited to the learning of low-level semantic-agnostic clues and merely provide a single outcome judgment. To tackle these issues, we propose ForgeryGPT, a novel framework that advances the IFDL task by capturing high-order forensics knowledge correlations of forged images from diverse linguistic feature spaces, while enabling explainable generation and interactive dialogue through a newly customized Large Language Model (LLM) architecture. Specifically, ForgeryGPT enhances traditional LLMs by integrating the Mask-Aware Forgery Extractor, which enables the excavating of precise forgery mask information from input images and facilitating pixel-level understanding of tampering artifacts. The Mask-Aware Forgery Extractor consists of a Forgery Localization Expert (FL-Expert) and a Mask Encoder, where the FL-Expert is augmented with an Object-agnostic Forgery Prompt and a Vocabulary-enhanced Vision Encoder, allowing for effectively capturing of multi-scale fine-grained forgery details. To enhance its performance, we implement a three-stage training strategy, supported by our designed Mask-Text Alignment and IFDL Task-Specific Instruction Tuning datasets, which align vision-language modalities and improve forgery detection and instruction-following capabilities. Extensive experiments demonstrate the effectiveness of the proposed method.