Get our free extension to see links to code for papers anywhere online!Free add-on: code for papers everywhere!Free add-on: See code for papers anywhere!

Abstract:We develop new conformal inference methods for obtaining validity guarantees on the output of large language models (LLMs). Prior work in conformal language modeling identifies a subset of the text that satisfies a high-probability guarantee of correctness. These methods work by filtering claims from the LLM's original response if a scoring function evaluated on the claim fails to exceed a threshold calibrated via split conformal prediction. Existing methods in this area suffer from two deficiencies. First, the guarantee stated is not conditionally valid. The trustworthiness of the filtering step may vary based on the topic of the response. Second, because the scoring function is imperfect, the filtering step can remove many valuable and accurate claims. We address both of these challenges via two new conformal methods. First, we generalize the conditional conformal procedure of Gibbs et al. (2023) in order to adaptively issue weaker guarantees when they are required to preserve the utility of the output. Second, we show how to systematically improve the quality of the scoring function via a novel algorithm for differentiating through the conditional conformal procedure. We demonstrate the efficacy of our approach on both synthetic and real-world datasets.

Via

Abstract:This paper introduces a boosted conformal procedure designed to tailor conformalized prediction intervals toward specific desired properties, such as enhanced conditional coverage or reduced interval length. We employ machine learning techniques, notably gradient boosting, to systematically improve upon a predefined conformity score function. This process is guided by carefully constructed loss functions that measure the deviation of prediction intervals from the targeted properties. The procedure operates post-training, relying solely on model predictions and without modifying the trained model (e.g., the deep network). Systematic experiments demonstrate that starting from conventional conformal methods, our boosted procedure achieves substantial improvements in reducing interval length and decreasing deviation from target conditional coverage.

Via

Figures and Tables:

Abstract:Inspired by the concept of active learning, we propose active inference$\unicode{x2013}$a methodology for statistical inference with machine-learning-assisted data collection. Assuming a budget on the number of labels that can be collected, the methodology uses a machine learning model to identify which data points would be most beneficial to label, thus effectively utilizing the budget. It operates on a simple yet powerful intuition: prioritize the collection of labels for data points where the model exhibits uncertainty, and rely on the model's predictions where it is confident. Active inference constructs provably valid confidence intervals and hypothesis tests while leveraging any black-box machine learning model and handling any data distribution. The key point is that it achieves the same level of accuracy with far fewer samples than existing baselines relying on non-adaptively-collected data. This means that for the same number of collected samples, active inference enables smaller confidence intervals and more powerful p-values. We evaluate active inference on datasets from public opinion research, census analysis, and proteomics.

Via

Figures and Tables:

Abstract:While reliable data-driven decision-making hinges on high-quality labeled data, the acquisition of quality labels often involves laborious human annotations or slow and expensive scientific measurements. Machine learning is becoming an appealing alternative as sophisticated predictive techniques are being used to quickly and cheaply produce large amounts of predicted labels; e.g., predicted protein structures are used to supplement experimentally derived structures, predictions of socioeconomic indicators from satellite imagery are used to supplement accurate survey data, and so on. Since predictions are imperfect and potentially biased, this practice brings into question the validity of downstream inferences. We introduce cross-prediction: a method for valid inference powered by machine learning. With a small labeled dataset and a large unlabeled dataset, cross-prediction imputes the missing labels via machine learning and applies a form of debiasing to remedy the prediction inaccuracies. The resulting inferences achieve the desired error probability and are more powerful than those that only leverage the labeled data. Closely related is the recent proposal of prediction-powered inference, which assumes that a good pre-trained model is already available. We show that cross-prediction is consistently more powerful than an adaptation of prediction-powered inference in which a fraction of the labeled data is split off and used to train the model. Finally, we observe that cross-prediction gives more stable conclusions than its competitors; its confidence intervals typically have significantly lower variability.

Via

Figures and Tables:

Abstract:Before deploying a black-box model in high-stakes problems, it is important to evaluate the model's performance on sensitive subpopulations. For example, in a recidivism prediction task, we may wish to identify demographic groups for which our prediction model has unacceptably high false positive rates or certify that no such groups exist. In this paper, we frame this task, often referred to as "fairness auditing," in terms of multiple hypothesis testing. We show how the bootstrap can be used to simultaneously bound performance disparities over a collection of groups with statistical guarantees. Our methods can be used to flag subpopulations affected by model underperformance, and certify subpopulations for which the model performs adequately. Crucially, our audit is model-agnostic and applicable to nearly any performance metric or group fairness criterion. Our methods also accommodate extremely rich -- even infinite -- collections of subpopulations. Further, we generalize beyond subpopulations by showing how to assess performance over certain distribution shifts. We test the proposed methods on benchmark datasets in predictive inference and algorithmic fairness and find that our audits can provide interpretable and trustworthy guarantees.

Via

Figures and Tables:

Abstract:Decision making or scientific discovery pipelines such as job hiring and drug discovery often involve multiple stages: before any resource-intensive step, there is often an initial screening that uses predictions from a machine learning model to shortlist a few candidates from a large pool. We study screening procedures that aim to select candidates whose unobserved outcomes exceed user-specified values. We develop a method that wraps around any prediction model to produce a subset of candidates while controlling the proportion of falsely selected units. Building upon the conformal inference framework, our method first constructs p-values that quantify the statistical evidence for large outcomes; it then determines the shortlist by comparing the p-values to a threshold introduced in the multiple testing literature. In many cases, the procedure selects candidates whose predictions are above a data-dependent threshold. We demonstrate the empirical performance of our method via simulations, and apply it to job hiring and drug discovery datasets.

Via

Figures and Tables:

Abstract:We introduce Learn then Test, a framework for calibrating machine learning models so that their predictions satisfy explicit, finite-sample statistical guarantees regardless of the underlying model and (unknown) data-generating distribution. The framework addresses, among other examples, false discovery rate control in multi-label classification, intersection-over-union control in instance segmentation, and the simultaneous control of the type-1 error of outlier detection and confidence set coverage in classification or regression. To accomplish this, we solve a key technical challenge: the control of arbitrary risks that are not necessarily monotonic. Our main insight is to reframe the risk-control problem as multiple hypothesis testing, enabling techniques and mathematical arguments different from those in the previous literature. We use our framework to provide new calibration methods for several core machine learning tasks with detailed worked examples in computer vision.

Via

Figures and Tables:

Abstract:Existing survival analysis techniques heavily rely on strong modelling assumptions and are, therefore, prone to model misspecification errors. In this paper, we develop an inferential method based on ideas from conformal prediction, which can wrap around any survival prediction algorithm to produce calibrated, covariate-dependent lower predictive bounds on survival times. In the Type I right-censoring setting, when the censoring times are completely exogenous, the lower predictive bounds have guaranteed coverage in finite samples without any assumptions other than that of operating on independent and identically distributed data points. Under a more general conditionally independent censoring assumption, the bounds satisfy a doubly robust property which states the following: marginal coverage is approximately guaranteed if either the censoring mechanism or the conditional survival function is estimated well. Further, we demonstrate that the lower predictive bounds remain valid and informative for other types of censoring. The validity and efficiency of our procedure are demonstrated on synthetic data and real COVID-19 data from the UK Biobank.

Via

Figures and Tables:

Abstract:Evaluating treatment effect heterogeneity widely informs treatment decision making. At the moment, much emphasis is placed on the estimation of the conditional average treatment effect via flexible machine learning algorithms. While these methods enjoy some theoretical appeal in terms of consistency and convergence rates, they generally perform poorly in terms of uncertainty quantification. This is troubling since assessing risk is crucial for reliable decision-making in sensitive and uncertain environments. In this work, we propose a conformal inference-based approach that can produce reliable interval estimates for counterfactuals and individual treatment effects under the potential outcome framework. For completely randomized or stratified randomized experiments with perfect compliance, the intervals have guaranteed average coverage in finite samples regardless of the unknown data generating mechanism. For randomized experiments with ignorable compliance and general observational studies obeying the strong ignorability assumption, the intervals satisfy a doubly robust property which states the following: the average coverage is approximately controlled if either the propensity score or the conditional quantiles of potential outcomes can be estimated accurately. Numerical studies on both synthetic and real datasets empirically demonstrate that existing methods suffer from a significant coverage deficit even in simple models. In contrast, our methods achieve the desired coverage with reasonably short intervals.

Via

Authors:Charmaine Chia, Matteo Sesia, Chi-Sing Ho, Stefanie S. Jeffrey, Jennifer Dionne, Emmanuel J. Candès, Roger T. Howe

Figures and Tables:

Abstract:Interpretability is important for many applications of machine learning to signal data, covering aspects such as how well a model fits the data, how accurately explanations are drawn from it, and how well these can be understood by people. Feature extraction and selection can improve model interpretability by identifying structures in the data that are both informative and intuitively meaningful. To this end, we propose a signal classification framework that combines feature extraction with feature selection using the knockoff filter, a method which provides guarantees on the false discovery rate (FDR) amongst selected features. We apply this to a dataset of Raman spectroscopy measurements from bacterial samples. Using a wavelet-based feature representation of the data and a logistic regression classifier, our framework achieves significantly higher predictive accuracy compared to using the original features as input. Benchmarking was also done with features obtained through principal components analysis, as well as the original features input into a neural network-based classifier. Our proposed framework achieved better predictive performance at the former task and comparable performance at the latter task, while offering the advantage of a more compact and human-interpretable set of features.

Via