Abstract:There have been recent efforts to move to population-based structural health monitoring (PBSHM) systems. One area of PBSHM which has been recognised for potential development is the use of multi-task learning (MTL); algorithms which differ from traditional independent learning algorithms. Presented here is the use of the MTL, ''Joint Feature Selection with LASSO'', to provide automatic feature selection for a structural dataset. The classification task is to differentiate between the port and starboard side of a tailplane, for samples from two aircraft of the same model. The independent learner produced perfect F1 scores but had poor engineering insight; whereas the MTL results were interpretable, highlighting structural differences as opposed to differences in experimental set-up.
Abstract:Power curves capture the relationship between wind speed and output power for a specific wind turbine. Accurate regression models of this function prove useful in monitoring, maintenance, design, and planning. In practice, however, the measurements do not always correspond to the ideal curve: power curtailments will appear as (additional) functional components. Such multivalued relationships cannot be modelled by conventional regression, and the associated data are usually removed during pre-processing. The current work suggests an alternative method to infer multivalued relationships in curtailed power data. Using a population-based approach, an overlapping mixture of probabilistic regression models is applied to signals recorded from turbines within an operational wind farm. The model is shown to provide an accurate representation of practical power data across the population.