Abstract:An important challenge faced by wind farm operators is to reduce operation and maintenance cost. Structural health monitoring provides a means of cost reduction through minimising unnecessary maintenance trips as well as prolonging turbine service life. Population-based structural health monitoring can further reduce the cost of health monitoring systems by implementing one system for multiple structures (i.e.~turbines). At the same time, shared data within a population of structures may improve the predictions of structural behaviour. To monitor turbine performance at a population/farm level, an important initial step is to construct a model that describes the behaviour of all turbines under normal conditions. This paper proposes a population-level model that explicitly captures the spatial and temporal correlations (between turbines) induced by the wake effect. The proposed model is a Gaussian process-based spatial autoregressive model, named here a GP-SPARX model. This approach is developed since (a) it reflects our physical understanding of the wake effect, and (b) it benefits from a stochastic data-based learner. A case study is provided to demonstrate the capability of the GP-SPARX model in capturing spatial and temporal variations as well as its potential applicability in a health monitoring system.
Abstract:Power curves capture the relationship between wind speed and output power for a specific wind turbine. Accurate regression models of this function prove useful in monitoring, maintenance, design, and planning. In practice, however, the measurements do not always correspond to the ideal curve: power curtailments will appear as (additional) functional components. Such multivalued relationships cannot be modelled by conventional regression, and the associated data are usually removed during pre-processing. The current work suggests an alternative method to infer multivalued relationships in curtailed power data. Using a population-based approach, an overlapping mixture of probabilistic regression models is applied to signals recorded from turbines within an operational wind farm. The model is shown to provide an accurate representation of practical power data across the population.