Space Center, Skolkovo Institute of Science and Technology
Abstract:Emergency search and rescue (SAR) operations often require rapid and precise target identification in complex environments where traditional manual drone control is inefficient. In order to address these scenarios, a rapid SAR system, UAV-VLRR (Vision-Language-Rapid-Response), is developed in this research. This system consists of two aspects: 1) A multimodal system which harnesses the power of Visual Language Model (VLM) and the natural language processing capabilities of ChatGPT-4o (LLM) for scene interpretation. 2) A non-linearmodel predictive control (NMPC) with built-in obstacle avoidance for rapid response by a drone to fly according to the output of the multimodal system. This work aims at improving response times in emergency SAR operations by providing a more intuitive and natural approach to the operator to plan the SAR mission while allowing the drone to carry out that mission in a rapid and safe manner. When tested, our approach was faster on an average by 33.75% when compared with an off-the-shelf autopilot and 54.6% when compared with a human pilot. Video of UAV-VLRR: https://youtu.be/KJqQGKKt1xY
Abstract:Swarm robotics plays a crucial role in enabling autonomous operations in dynamic and unpredictable environments. However, a major challenge remains ensuring safe and efficient navigation in environments filled with both dynamic alive (e.g., humans) and dynamic inanimate (e.g., non-living objects) obstacles. In this paper, we propose ImpedanceGPT, a novel system that combines a Vision-Language Model (VLM) with retrieval-augmented generation (RAG) to enable real-time reasoning for adaptive navigation of mini-drone swarms in complex environments. The key innovation of ImpedanceGPT lies in the integration of VLM and RAG, which provides the drones with enhanced semantic understanding of their surroundings. This enables the system to dynamically adjust impedance control parameters in response to obstacle types and environmental conditions. Our approach not only ensures safe and precise navigation but also improves coordination between drones in the swarm. Experimental evaluations demonstrate the effectiveness of the system. The VLM-RAG framework achieved an obstacle detection and retrieval accuracy of 80 % under optimal lighting. In static environments, drones navigated dynamic inanimate obstacles at 1.4 m/s but slowed to 0.7 m/s with increased separation around humans. In dynamic environments, speed adjusted to 1.0 m/s near hard obstacles, while reducing to 0.6 m/s with higher deflection to safely avoid moving humans.
Abstract:This paper introduces CognitiveDrone, a novel Vision-Language-Action (VLA) model tailored for complex Unmanned Aerial Vehicles (UAVs) tasks that demand advanced cognitive abilities. Trained on a dataset comprising over 8,000 simulated flight trajectories across three key categories-Human Recognition, Symbol Understanding, and Reasoning-the model generates real-time 4D action commands based on first-person visual inputs and textual instructions. To further enhance performance in intricate scenarios, we propose CognitiveDrone-R1, which integrates an additional Vision-Language Model (VLM) reasoning module to simplify task directives prior to high-frequency control. Experimental evaluations using our open-source benchmark, CognitiveDroneBench, reveal that while a racing-oriented model (RaceVLA) achieves an overall success rate of 31.3%, the base CognitiveDrone model reaches 59.6%, and CognitiveDrone-R1 attains a success rate of 77.2%. These results demonstrate improvements of up to 30% in critical cognitive tasks, underscoring the effectiveness of incorporating advanced reasoning capabilities into UAV control systems. Our contributions include the development of a state-of-the-art VLA model for UAV control and the introduction of the first dedicated benchmark for assessing cognitive tasks in drone operations. The complete repository is available at cognitivedrone.github.io
Abstract:In autonomous driving, dynamic environment and corner cases pose significant challenges to the robustness of ego vehicle's decision-making. To address these challenges, commencing with the representation of state-action mapping in the end-to-end autonomous driving paradigm, we introduce a novel pipeline, VDT-Auto. Leveraging the advancement of the state understanding of Visual Language Model (VLM), incorporating with diffusion Transformer-based action generation, our VDT-Auto parses the environment geometrically and contextually for the conditioning of the diffusion process. Geometrically, we use a bird's-eye view (BEV) encoder to extract feature grids from the surrounding images. Contextually, the structured output of our fine-tuned VLM is processed into textual embeddings and noisy paths. During our diffusion process, the added noise for the forward process is sampled from the noisy path output of the fine-tuned VLM, while the extracted BEV feature grids and embedded texts condition the reverse process of our diffusion Transformers. Our VDT-Auto achieved 0.52m on average L2 errors and 21% on average collision rate in the nuScenes open-loop planning evaluation. Moreover, the real-world demonstration exhibited prominent generalizability of our VDT-Auto. The code and dataset will be released after acceptance.
Abstract:We propose a new concept, Evolution 6.0, which represents the evolution of robotics driven by Generative AI. When a robot lacks the necessary tools to accomplish a task requested by a human, it autonomously designs the required instruments and learns how to use them to achieve the goal. Evolution 6.0 is an autonomous robotic system powered by Vision-Language Models (VLMs), Vision-Language Action (VLA) models, and Text-to-3D generative models for tool design and task execution. The system comprises two key modules: the Tool Generation Module, which fabricates task-specific tools from visual and textual data, and the Action Generation Module, which converts natural language instructions into robotic actions. It integrates QwenVLM for environmental understanding, OpenVLA for task execution, and Llama-Mesh for 3D tool generation. Evaluation results demonstrate a 90% success rate for tool generation with a 10-second inference time, and action generation achieving 83.5% in physical and visual generalization, 70% in motion generalization, and 37% in semantic generalization. Future improvements will focus on bimanual manipulation, expanded task capabilities, and enhanced environmental interpretation to improve real-world adaptability.
Abstract:Autonomous drone navigation in dynamic environments remains a critical challenge, especially when dealing with unpredictable scenarios including fast-moving objects with rapidly changing goal positions. While traditional planners and classical optimisation methods have been extensively used to address this dynamic problem, they often face real-time, unpredictable changes that ultimately leads to sub-optimal performance in terms of adaptiveness and real-time decision making. In this work, we propose a novel motion planner, AgilePilot, based on Deep Reinforcement Learning (DRL) that is trained in dynamic conditions, coupled with real-time Computer Vision (CV) for object detections during flight. The training-to-deployment framework bridges the Sim2Real gap, leveraging sophisticated reward structures that promotes both safety and agility depending upon environment conditions. The system can rapidly adapt to changing environments, while achieving a maximum speed of 3.0 m/s in real-world scenarios. In comparison, our approach outperforms classical algorithms such as Artificial Potential Field (APF) based motion planner by 3 times, both in performance and tracking accuracy of dynamic targets by using velocity predictions while exhibiting 90% success rate in 75 conducted experiments. This work highlights the effectiveness of DRL in tackling real-time dynamic navigation challenges, offering intelligent safety and agility.
Abstract:With the growing demand for efficient logistics and warehouse management, unmanned aerial vehicles (UAVs) are emerging as a valuable complement to automated guided vehicles (AGVs). UAVs enhance efficiency by navigating dense environments and operating at varying altitudes. However, their limited flight time, battery life, and payload capacity necessitate a supporting ground station. To address these challenges, we propose HetSwarm, a heterogeneous multi-robot system that combines a UAV and a mobile ground robot for collaborative navigation in cluttered and dynamic conditions. Our approach employs an artificial potential field (APF)-based path planner for the UAV, allowing it to dynamically adjust its trajectory in real time. The ground robot follows this path while maintaining connectivity through impedance links, ensuring stable coordination. Additionally, the ground robot establishes temporal impedance links with low-height ground obstacles to avoid local collisions, as these obstacles do not interfere with the UAV's flight. Experimental validation of HetSwarm in diverse environmental conditions demonstrated a 90% success rate across 30 test cases. The ground robot exhibited an average deviation of 45 cm near obstacles, confirming effective collision avoidance. Extensive simulations in the Gym PyBullet environment further validated the robustness of our system for real-world applications, demonstrating its potential for dynamic, real-time task execution in cluttered environments.
Abstract:This paper addresses the challenge of decentralized task allocation within heterogeneous multi-agent systems operating under communication constraints. We introduce a novel framework that integrates graph neural networks (GNNs) with a centralized training and decentralized execution (CTDE) paradigm, further enhanced by a tailored Proximal Policy Optimization (PPO) algorithm for multi-agent deep reinforcement learning (MARL). Our approach enables unmanned aerial vehicles (UAVs) and unmanned ground vehicles (UGVs) to dynamically allocate tasks efficiently without necessitating central coordination in a 3D grid environment. The framework minimizes total travel time while simultaneously avoiding conflicts in task assignments. For the cost calculation and routing, we employ reservation-based A* and R* path planners. Experimental results revealed that our method achieves a high 92.5% conflict-free success rate, with only a 7.49% performance gap compared to the centralized Hungarian method, while outperforming the heuristic decentralized baseline based on greedy approach. Additionally, the framework exhibits scalability with up to 20 agents with allocation processing of 2.8 s and robustness in responding to dynamically generated tasks, underscoring its potential for real-world applications in complex multi-agent scenarios.
Abstract:This paper introduces GestLLM, an advanced system for human-robot interaction that enables intuitive robot control through hand gestures. Unlike conventional systems, which rely on a limited set of predefined gestures, GestLLM leverages large language models and feature extraction via MediaPipe to interpret a diverse range of gestures. This integration addresses key limitations in existing systems, such as restricted gesture flexibility and the inability to recognize complex or unconventional gestures commonly used in human communication. By combining state-of-the-art feature extraction and language model capabilities, GestLLM achieves performance comparable to leading vision-language models while supporting gestures underrepresented in traditional datasets. For example, this includes gestures from popular culture, such as the ``Vulcan salute" from Star Trek, without any additional pretraining, prompt engineering, etc. This flexibility enhances the naturalness and inclusivity of robot control, making interactions more intuitive and user-friendly. GestLLM provides a significant step forward in gesture-based interaction, enabling robots to understand and respond to a wide variety of hand gestures effectively. This paper outlines its design, implementation, and evaluation, demonstrating its potential applications in advanced human-robot collaboration, assistive robotics, and interactive entertainment.
Abstract:We present GazeGrasp, a gaze-based manipulation system enabling individuals with motor impairments to control collaborative robots using eye-gaze. The system employs an ESP32 CAM for eye tracking, MediaPipe for gaze detection, and YOLOv8 for object localization, integrated with a Universal Robot UR10 for manipulation tasks. After user-specific calibration, the system allows intuitive object selection with a magnetic snapping effect and robot control via eye gestures. Experimental evaluation involving 13 participants demonstrated that the magnetic snapping effect significantly reduced gaze alignment time, improving task efficiency by 31%. GazeGrasp provides a robust, hands-free interface for assistive robotics, enhancing accessibility and autonomy for users.