Abstract:Autoencoders empower state-of-the-art image and video generative models by compressing pixels into a latent space through visual tokenization. Although recent advances have alleviated the performance degradation of autoencoders under high compression ratios, addressing the training instability caused by GAN remains an open challenge. While improving spatial compression, we also aim to minimize the latent space dimensionality, enabling more efficient and compact representations. To tackle these challenges, we focus on improving the decoder's expressiveness. Concretely, we propose DGAE, which employs a diffusion model to guide the decoder in recovering informative signals that are not fully decoded from the latent representation. With this design, DGAE effectively mitigates the performance degradation under high spatial compression rates. At the same time, DGAE achieves state-of-the-art performance with a 2x smaller latent space. When integrated with Diffusion Models, DGAE demonstrates competitive performance on image generation for ImageNet-1K and shows that this compact latent representation facilitates faster convergence of the diffusion model.
Abstract:Reinforcement Learning from Human Feedback (RLHF) has been proven to be an effective method for preference alignment of large language models (LLMs) and is widely used in the post-training process of LLMs. However, RLHF struggles with handling multiple competing preferences. This leads to a decrease in the alignment of LLMs with human preferences. To address this issue, we propose Preference Mixture of LoRAs (PMoL) from the perspective of model architecture, which can adapt to any number of preferences to mix. PMoL combines Mixture of Experts (MoE) and Low Rank Adaptor (LoRA). This architecture is innovatively applied to the research of preference alignment and has achieved significant performance improvement. The expert group soft loss is used to enable MoE with the ability to mix preferences. Through comprehensive evaluation by the reward model and GPT-4o, the experiment results show that PMoL has superior preference mixing capabilities compared to baseline methods. PMoL achieves better preference alignment with lower training costs.
Abstract:Recently, inversion methods have focused on additional high-rate information in the generator (e.g., weights or intermediate features) to refine inversion and editing results from embedded latent codes. Although these techniques gain reasonable improvement in reconstruction, they decrease editing capability, especially on complex images (e.g., containing occlusions, detailed backgrounds, and artifacts). A vital crux is refining inversion results, avoiding editing capability degradation. To tackle this problem, we introduce Domain-Specific Hybrid Refinement (DHR), which draws on the advantages and disadvantages of two mainstream refinement techniques to maintain editing ability with fidelity improvement. Specifically, we first propose Domain-Specific Segmentation to segment images into two parts: in-domain and out-of-domain parts. The refinement process aims to maintain the editability for in-domain areas and improve two domains' fidelity. We refine these two parts by weight modulation and feature modulation, which we call Hybrid Modulation Refinement. Our proposed method is compatible with all latent code embedding methods. Extension experiments demonstrate that our approach achieves state-of-the-art in real image inversion and editing. Code is available at https://github.com/caopulan/Domain-Specific_Hybrid_Refinement_Inversion.