Abstract:This paper proposes an optimization framework that addresses both cycling degradation and calendar aging of batteries for autonomous mobile robot (AMR) to minimize battery degradation while ensuring task completion. A rectangle method of piecewise linear approximation is employed to linearize the bilinear optimization problem. We conduct a case study to validate the efficiency of the proposed framework in achieving an optimal path planning for AMRs while reducing battery aging.
Abstract:This paper proposes a control-oriented optimization platform for autonomous mobile robots (AMRs), focusing on extending battery life while ensuring task completion. The requirement of fast AMR task planning while maintaining minimum battery state of charge, thus maximizing the battery life, renders a bilinear optimization problem. McCormick envelop technique is proposed to linearize the bilinear term. A novel planning algorithm with relaxed constraints is also developed to handle parameter uncertainties robustly with high efficiency ensured. Simulation results are provided to demonstrate the utility of the proposed methods in reducing battery degradation while satisfying task completion requirements.
Abstract:Land-use decision-making processes have a long history of producing globally pervasive systemic equity and sustainability concerns. Quantitative, optimization-based planning approaches, e.g. Multi-Objective Land Allocation (MOLA), seemingly open the possibility to improve objectivity and transparency by explicitly evaluating planning priorities by the type, amount, and location of land uses. Here, we show that optimization-based planning approaches with generic planning criteria generate a series of unstable "flashpoints" whereby tiny changes in planning priorities produce large-scale changes in the amount of land use by type. We give quantitative arguments that the flashpoints we uncover in MOLA models are examples of a more general family of instabilities that occur whenever planning accounts for factors that coordinate use on- and between-sites, regardless of whether these planning factors are formulated explicitly or implicitly. We show that instabilities lead to regions of ambiguity in land-use type that we term "gray areas". By directly mapping gray areas between flashpoints, we show that quantitative methods retain utility by reducing combinatorially large spaces of possible land-use patterns to a small, characteristic set that can engage stakeholders to arrive at more efficient and just outcomes.