Abstract:The broad range of neural network training techniques that invoke optimization but rely on ad hoc modification for validity suggests that optimization-based training is misguided. Shortcomings of optimization-based training are brought to particularly strong relief by the problem of overfitting, where naive optimization produces spurious outcomes. The broad success of neural networks for modelling physical processes has prompted advances that are based on inverting the direction of investigation and treating neural networks as if they were physical systems in their own right These successes raise the question of whether broader, physical perspectives could motivate the construction of improved training algorithms. Here, we introduce simmering, a physics-based method that trains neural networks to generate weights and biases that are merely ``good enough'', but which, paradoxically, outperforms leading optimization-based approaches. Using classification and regression examples we show that simmering corrects neural networks that are overfit by Adam, and show that simmering avoids overfitting if deployed from the outset. Our results question optimization as a paradigm for neural network training, and leverage information-geometric arguments to point to the existence of classes of sufficient training algorithms that do not take optimization as their starting point.
Abstract:Land-use decision-making processes have a long history of producing globally pervasive systemic equity and sustainability concerns. Quantitative, optimization-based planning approaches, e.g. Multi-Objective Land Allocation (MOLA), seemingly open the possibility to improve objectivity and transparency by explicitly evaluating planning priorities by the type, amount, and location of land uses. Here, we show that optimization-based planning approaches with generic planning criteria generate a series of unstable "flashpoints" whereby tiny changes in planning priorities produce large-scale changes in the amount of land use by type. We give quantitative arguments that the flashpoints we uncover in MOLA models are examples of a more general family of instabilities that occur whenever planning accounts for factors that coordinate use on- and between-sites, regardless of whether these planning factors are formulated explicitly or implicitly. We show that instabilities lead to regions of ambiguity in land-use type that we term "gray areas". By directly mapping gray areas between flashpoints, we show that quantitative methods retain utility by reducing combinatorially large spaces of possible land-use patterns to a small, characteristic set that can engage stakeholders to arrive at more efficient and just outcomes.