Get our free extension to see links to code for papers anywhere online!

Chrome logo Add to Chrome

Firefox logo Add to Firefox

Picture for Dino Sejdinovic

Time-to-event regression using partially monotonic neural networks


Mar 26, 2021
David Rindt, Robert Hu, David Steinsaltz, Dino Sejdinovic


  Access Paper or Ask Questions

Inter-domain Deep Gaussian Processes


Nov 01, 2020
Tim G. J. Rudner, Dino Sejdinovic, Yarin Gal

* Published in Proceedings of the 37th International Conference on Machine Learning (ICML 2020) 

  Access Paper or Ask Questions

Kernel-based Graph Learning from Smooth Signals: A Functional Viewpoint


Aug 23, 2020
Xingyue Pu, Siu Lun Chau, Xiaowen Dong, Dino Sejdinovic

* 13 pages, with extra 3-page appendices 

  Access Paper or Ask Questions

Benign Overfitting and Noisy Features


Aug 06, 2020
Zhu Li, Weijie Su, Dino Sejdinovic


  Access Paper or Ask Questions

Variational Inference with Continuously-Indexed Normalizing Flows


Jul 10, 2020
Anthony Caterini, Rob Cornish, Dino Sejdinovic, Arnaud Doucet

* To appear in the proceedings of the second workshop on Invertible Neural Networks, Normalizing Flows, and Explicit Likelihood Models at ICML 2020 

  Access Paper or Ask Questions

Meta Learning for Causal Direction


Jul 06, 2020
Jean-Francois Ton, Dino Sejdinovic, Kenji Fukumizu


  Access Paper or Ask Questions

A Perspective on Gaussian Processes for Earth Observation


Jul 02, 2020
Gustau Camps-Valls, Dino Sejdinovic, Jakob Runge, Markus Reichstein

* National Science Review, Volume 6, Issue 4, July 2019, Pages 616-618 
* 1 figure 

  Access Paper or Ask Questions

Learning Inconsistent Preferences with Kernel Methods


Jun 06, 2020
Siu Lun Chau, Javier González, Dino Sejdinovic


  Access Paper or Ask Questions

Spectral Ranking with Covariates


May 13, 2020
Siu Lun Chau, Mihai Cucuringu, Dino Sejdinovic


  Access Paper or Ask Questions

Large Scale Tensor Regression using Kernels and Variational Inference


Feb 11, 2020
Robert Hu, Geoff K. Nicholls, Dino Sejdinovic


  Access Paper or Ask Questions

A kernel log-rank test of independence for right-censored data


Dec 08, 2019
Tamara Fernandez, Arthur Gretton, David Rindt, Dino Sejdinovic


  Access Paper or Ask Questions

Detecting anthropogenic cloud perturbations with deep learning


Nov 29, 2019
Duncan Watson-Parris, Samuel Sutherland, Matthew Christensen, Anthony Caterini, Dino Sejdinovic, Philip Stier

* Awarded Best Paper and Spotlight Oral at Climate Change: How Can AI Help? (Workshop) at International Conference on Machine Learning (ICML), Long Beach, California, 2019 

  Access Paper or Ask Questions

Kernel Dependence Regularizers and Gaussian Processes with Applications to Algorithmic Fairness


Nov 11, 2019
Zhu Li, Adrian Perez-Suay, Gustau Camps-Valls, Dino Sejdinovic


  Access Paper or Ask Questions

Nonparametric Independence Testing for Right-Censored Data using Optimal Transport


Jun 10, 2019
David Rindt, Dino Sejdinovic, David Steinsaltz


  Access Paper or Ask Questions

Noise Contrastive Meta-Learning for Conditional Density Estimation using Kernel Mean Embeddings


Jun 05, 2019
Jean-Francois Ton, Lucian Chan, Yee Whye Teh, Dino Sejdinovic


  Access Paper or Ask Questions

Rejoinder for "Probabilistic Integration: A Role in Statistical Computation?"


Nov 26, 2018
Francois-Xavier Briol, Chris J. Oates, Mark Girolami, Michael A. Osborne, Dino Sejdinovic

* Accepted to Statistical Science 

  Access Paper or Ask Questions

Hyperparameter Learning via Distributional Transfer


Oct 15, 2018
Ho Chung Leon Law, Peilin Zhao, Junzhou Huang, Dino Sejdinovic


  Access Paper or Ask Questions

A Differentially Private Kernel Two-Sample Test


Aug 01, 2018
Anant Raj, Ho Chung Leon Law, Dino Sejdinovic, Mijung Park


  Access Paper or Ask Questions

Gaussian Processes and Kernel Methods: A Review on Connections and Equivalences


Jul 06, 2018
Motonobu Kanagawa, Philipp Hennig, Dino Sejdinovic, Bharath K Sriperumbudur

* 64 pages 

  Access Paper or Ask Questions

A Unified Analysis of Random Fourier Features


Jun 24, 2018
Zhu Li, Jean-Francois Ton, Dino Oglic, Dino Sejdinovic


  Access Paper or Ask Questions

Hamiltonian Variational Auto-Encoder


May 29, 2018
Anthony L. Caterini, Arnaud Doucet, Dino Sejdinovic

* Submitted to NIPS 2018 

  Access Paper or Ask Questions

Variational Learning on Aggregate Outputs with Gaussian Processes


May 22, 2018
Ho Chung Leon Law, Dino Sejdinovic, Ewan Cameron, Tim CD Lucas, Seth Flaxman, Katherine Battle, Kenji Fukumizu


  Access Paper or Ask Questions

Causal Inference via Kernel Deviance Measures


Apr 12, 2018
Jovana Mitrovic, Dino Sejdinovic, Yee Whye Teh


  Access Paper or Ask Questions

Bayesian Approaches to Distribution Regression


Feb 22, 2018
Ho Chung Leon Law, Dougal J. Sutherland, Dino Sejdinovic, Seth Flaxman

* Final version to be published at AISTATS 2018 

  Access Paper or Ask Questions

Spatial Mapping with Gaussian Processes and Nonstationary Fourier Features


Nov 15, 2017
Jean-Francois Ton, Seth Flaxman, Dino Sejdinovic, Samir Bhatt

* under submission to Spatial Statistics Journal 

  Access Paper or Ask Questions

Testing and Learning on Distributions with Symmetric Noise Invariance


Nov 05, 2017
Ho Chung Leon Law, Christopher Yau, Dino Sejdinovic

* 22 pages 

  Access Paper or Ask Questions

Probabilistic Integration: A Role in Statistical Computation?


Oct 18, 2017
François-Xavier Briol, Chris. J. Oates, Mark Girolami, Michael A. Osborne, Dino Sejdinovic

* Several improvements suggested by reviewers, including additional experiments on uncertainty quantification properties. Change of title: previously "Probabilistic Integration: A Role for Statisticians in Numerical Analysis?" 

  Access Paper or Ask Questions

Kernel Sequential Monte Carlo


Jul 25, 2017
Ingmar Schuster, Heiko Strathmann, Brooks Paige, Dino Sejdinovic

* ECML-PKDD 2017 

  Access Paper or Ask Questions

Poisson intensity estimation with reproducing kernels


Jun 26, 2017
Seth Flaxman, Yee Whye Teh, Dino Sejdinovic

* AISTATS 2017 

  Access Paper or Ask Questions