Abstract:Federated learning (FL) is a widely used framework for machine learning in distributed data environments where clients hold data that cannot be easily centralised, such as for data protection reasons. FL, however, is known to be vulnerable to non-IID data. Clustered FL addresses this issue by finding more homogeneous clusters of clients. We propose a novel one-shot clustering method, EMD-CFL, using the Earth Mover's distance (EMD) between data distributions in embedding space. We theoretically motivate the use of EMDs using results from the domain adaptation literature and demonstrate empirically superior clustering performance in extensive comparisons against 16 baselines and on a range of challenging datasets.
Abstract:AI has become pervasive in recent years, but state-of-the-art approaches predominantly neglect the need for AI systems to be contestable. Instead, contestability is advocated by AI guidelines (e.g. by the OECD) and regulation of automated decision-making (e.g. GDPR). In this position paper we explore how contestability can be achieved computationally in and for AI. We argue that contestable AI requires dynamic (human-machine and/or machine-machine) explainability and decision-making processes, whereby machines can (i) interact with humans and/or other machines to progressively explain their outputs and/or their reasoning as well as assess grounds for contestation provided by these humans and/or other machines, and (ii) revise their decision-making processes to redress any issues successfully raised during contestation. Given that much of the current AI landscape is tailored to static AIs, the need to accommodate contestability will require a radical rethinking, that, we argue, computational argumentation is ideally suited to support.
Abstract:Recent research has shown the potential for neural networks to improve upon classical survival models such as the Cox model, which is widely used in clinical practice. Neural networks, however, typically rely on data that are centrally available, whereas healthcare data are frequently held in secure silos. We present a federated Cox model that accommodates this data setting and also relaxes the proportional hazards assumption, allowing time-varying covariate effects. In this latter respect, our model does not require explicit specification of the time-varying effects, reducing upfront organisational costs compared to previous works. We experiment with publicly available clinical datasets and demonstrate that the federated model is able to perform as well as a standard model.