Abstract:Large language models (LLMs) commonly risk copyright infringement by reproducing protected content verbatim or with insufficient transformative modifications, posing significant ethical, legal, and practical concerns. Current inference-time safeguards predominantly rely on restrictive refusal-based filters, often compromising the practical utility of these models. To address this, we collaborated closely with intellectual property experts to develop FUA-LLM (Fair Use Aligned Language Models), a legally-grounded framework explicitly designed to align LLM outputs with fair-use doctrine. Central to our method is FairUseDB, a carefully constructed dataset containing 18,000 expert-validated examples covering nine realistic infringement scenarios. Leveraging this dataset, we apply Direct Preference Optimization (DPO) to fine-tune open-source LLMs, encouraging them to produce legally compliant and practically useful alternatives rather than resorting to blunt refusal. Recognizing the shortcomings of traditional evaluation metrics, we propose new measures: Weighted Penalty Utility and Compliance Aware Harmonic Mean (CAH) to balance infringement risk against response utility. Extensive quantitative experiments coupled with expert evaluations confirm that FUA-LLM substantially reduces problematic outputs (up to 20\%) compared to state-of-the-art approaches, while preserving real-world usability.
Abstract:Effective teaching requires adapting instructional strategies to accommodate the diverse cognitive and behavioral profiles of students, a persistent challenge in education and teacher training. While Large Language Models (LLMs) offer promise as tools to simulate such complex pedagogical environments, current simulation frameworks are limited in two key respects: (1) they often reduce students to static knowledge profiles, and (2) they lack adaptive mechanisms for modeling teachers who evolve their strategies in response to student feedback. To address these gaps, \textbf{we introduce a novel simulation framework that integrates LLM-based heterogeneous student agents with a self-optimizing teacher agent}. The teacher agent's pedagogical policy is dynamically evolved using a genetic algorithm, allowing it to discover and refine effective teaching strategies based on the aggregate performance of diverse learners. In addition, \textbf{we propose Persona-RAG}, a Retrieval Augmented Generation module that enables student agents to retrieve knowledge tailored to their individual learning styles. Persona-RAG preserves the retrieval accuracy of standard RAG baselines while enhancing personalization, an essential factor in modeling realistic educational scenarios. Through extensive experiments, we demonstrate how our framework supports the emergence of distinct and interpretable teaching patterns when interacting with varied student populations. Our results highlight the potential of LLM-driven simulations to inform adaptive teaching practices and provide a testbed for training human educators in controlled, data-driven environments.