Abstract:Vision Language Action (VLA) models are widely used in Embodied AI, enabling robots to interpret and execute language instructions. However, their robustness to natural language variability in real-world scenarios has not been thoroughly investigated. In this work, we present a novel systematic study of the robustness of state-of-the-art VLA models under linguistic perturbations. Specifically, we evaluate model performance under two types of instruction noise: (1) human-generated paraphrasing and (2) the addition of irrelevant context. We further categorize irrelevant contexts into two groups according to their length and their semantic and lexical proximity to robot commands. In this study, we observe consistent performance degradation as context size expands. We also demonstrate that the model can exhibit relative robustness to random context, with a performance drop within 10%, while semantically and lexically similar context of the same length can trigger a quality decline of around 50%. Human paraphrases of instructions lead to a drop of nearly 20%. To mitigate this, we propose an LLM-based filtering framework that extracts core commands from noisy inputs. Incorporating our filtering step allows models to recover up to 98.5% of their original performance under noisy conditions.
Abstract:Combinatorial optimization (CO) problems are crucial in various scientific and industrial applications. Recently, researchers have proposed using unsupervised Graph Neural Networks (GNNs) to address NP-hard combinatorial optimization problems, which can be reformulated as Quadratic Unconstrained Binary Optimization (QUBO) problems. GNNs have demonstrated high performance with nearly linear scalability and significantly outperformed classic heuristic-based algorithms in terms of computational efficiency on large-scale problems. However, when utilizing standard node features, GNNs tend to get trapped to suboptimal local minima of the energy landscape, resulting in low quality solutions. We introduce a novel algorithm, denoted hereafter as QRF-GNN, leveraging the power of GNNs to efficiently solve CO problems with QUBO formulation. It relies on unsupervised learning by minimizing the loss function derived from QUBO relaxation. The proposed key components of the architecture include the recurrent use of intermediate GNN predictions, parallel convolutional layers and combination of static node features as input. Altogether, it helps to adapt the intermediate solution candidate to minimize QUBO-based loss function, taking into account not only static graph features, but also intermediate predictions treated as dynamic, i.e. iteratively changing recurrent features. The performance of the proposed algorithm has been evaluated on the canonical benchmark datasets for maximum cut, graph coloring and maximum independent set problems. Results of experiments show that QRF-GNN drastically surpasses existing learning-based approaches and is comparable to the state-of-the-art conventional heuristics, improving their scalability on large instances.