Abstract:Multimodal image-text contrastive learning has shown that joint representations can be learned across modalities. Here, we show how leveraging multiple views of image data with contrastive learning can improve downstream fine-grained classification performance for species recognition, even when one view is absent. We propose ContRastive Image-remote Sensing Pre-training (CRISP)$\unicode{x2014}$a new pre-training task for ground-level and aerial image representation learning of the natural world$\unicode{x2014}$and introduce Nature Multi-View (NMV), a dataset of natural world imagery including $>3$ million ground-level and aerial image pairs for over 6,000 plant taxa across the ecologically diverse state of California. The NMV dataset and accompanying material are available at hf.co/datasets/andyvhuynh/NatureMultiView.
Abstract:We present BEHAVIOR-1K, a comprehensive simulation benchmark for human-centered robotics. BEHAVIOR-1K includes two components, guided and motivated by the results of an extensive survey on "what do you want robots to do for you?". The first is the definition of 1,000 everyday activities, grounded in 50 scenes (houses, gardens, restaurants, offices, etc.) with more than 9,000 objects annotated with rich physical and semantic properties. The second is OMNIGIBSON, a novel simulation environment that supports these activities via realistic physics simulation and rendering of rigid bodies, deformable bodies, and liquids. Our experiments indicate that the activities in BEHAVIOR-1K are long-horizon and dependent on complex manipulation skills, both of which remain a challenge for even state-of-the-art robot learning solutions. To calibrate the simulation-to-reality gap of BEHAVIOR-1K, we provide an initial study on transferring solutions learned with a mobile manipulator in a simulated apartment to its real-world counterpart. We hope that BEHAVIOR-1K's human-grounded nature, diversity, and realism make it valuable for embodied AI and robot learning research. Project website: https://behavior.stanford.edu.