Abstract:While Large Multimodal Models (LMMs) have made significant progress, they remain largely text-centric, relying on language as their core reasoning modality. As a result, they are limited in their ability to handle reasoning tasks that are predominantly visual. Recent approaches have sought to address this by supervising intermediate visual steps with helper images, depth maps, or image crops. However, these strategies impose restrictive priors on what "useful" visual abstractions look like, add heavy annotation costs, and struggle to generalize across tasks. To address this critical limitation, we propose a task-agnostic mechanism that trains LMMs to discover and use visual reasoning tokens without explicit supervision. These tokens attend globally and re-encode the image in a task-adaptive way, enabling the model to extract relevant visual information without hand-crafted supervision. Our approach outperforms direct fine-tuning and achieves state-of-the-art results on a diverse range of vision-centric tasks -- including those where intermediate abstractions are hard to specify -- while also generalizing to multi-task instruction tuning.




Abstract:Recently, Large Multimodal Models (LMMs) have made significant progress in video question-answering using a frame-wise approach by leveraging large-scale, image-based pretraining in a zero-shot manner. While image-based methods for videos have shown impressive performance, a current limitation is that they often overlook how key timestamps are selected and cannot adjust when incorrect timestamps are identified. Moreover, they are unable to extract details relevant to the question, instead providing general descriptions of the frame. To overcome this, we design a multi-LMM agent framework that travels along the video, iteratively collecting relevant information from keyframes through interactive question-asking until there is sufficient information to answer the question. Specifically, we propose TraveLER, a model that can create a plan to "Traverse" through the video, ask questions about individual frames to "Locate" and store key information, and then "Evaluate" if there is enough information to answer the question. Finally, if there is not enough information, our method is able to "Replan" based on its collected knowledge. Through extensive experiments, we find that the proposed TraveLER approach improves performance on several video question-answering benchmarks, such as NExT-QA, STAR, and Perception Test, without the need to fine-tune on specific datasets.