Abstract:Humanoid robots are envisioned as general-purpose platforms in human-centered environments, yet their deployment is limited by vulnerability to falls and the risks posed by rigid metal-plastic structures to people and surroundings. We introduce a soft-rigid co-design framework that leverages non-Newtonian fluid-based soft responsive materials to enhance humanoid safety. The material remains compliant during normal interaction but rapidly stiffens under impact, absorbing and dissipating fall-induced forces. Physics-based simulations guide protector placement and thickness and enable learning of active fall policies. Applied to a 42 kg life-size humanoid, the protector markedly reduces peak impact and allows repeated falls without hardware damage, including drops from 3 m and tumbles down long staircases. Across diverse scenarios, the approach improves robot robustness and environmental safety. By uniting responsive materials, structural co-design, and learning-based control, this work advances interact-safe, industry-ready humanoid robots.
Abstract:Dynamic obstacle avoidance (DOA) is critical for quadrupedal robots operating in environments with moving obstacles or humans. Existing approaches typically rely on navigation-based trajectory replanning, which assumes sufficient reaction time and leading to fails when obstacles approach rapidly. In such scenarios, quadrupedal robots require reflexive evasion capabilities to perform instantaneous, low-latency maneuvers. This paper introduces Reflexive Evasion Robot (REBot), a control framework that enables quadrupedal robots to achieve real-time reflexive obstacle avoidance. REBot integrates an avoidance policy and a recovery policy within a finite-state machine. With carefully designed learning curricula and by incorporating regularization and adaptive rewards, REBot achieves robust evasion and rapid stabilization in instantaneous DOA tasks. We validate REBot through extensive simulations and real-world experiments, demonstrating notable improvements in avoidance success rates, energy efficiency, and robustness to fast-moving obstacles. Videos and appendix are available on https://rebot-2025.github.io/.