Get our free extension to see links to code for papers anywhere online!

Chrome logo  Add to Chrome

Firefox logo Add to Firefox

Learning to Noise: Application-Agnostic Data Sharing with Local Differential Privacy


Oct 23, 2020
Alex Mansbridge, Gregory Barbour, Davide Piras, Christopher Frye, Ilya Feige, David Barber


   Access Paper or Ask Questions

  • Share via Twitter
  • Share via Facebook
  • Share via LinkedIn
  • Share via Whatsapp
  • Share via Messenger
  • Share via Email

Explainability for fair machine learning


Oct 14, 2020
Tom Begley, Tobias Schwedes, Christopher Frye, Ilya Feige

* 8 pages, 3 figures, 2 tables, 1 appendix 

   Access Paper or Ask Questions

  • Share via Twitter
  • Share via Facebook
  • Share via LinkedIn
  • Share via Whatsapp
  • Share via Messenger
  • Share via Email

Human-interpretable model explainability on high-dimensional data


Oct 14, 2020
Damien de Mijolla, Christopher Frye, Markus Kunesch, John Mansir, Ilya Feige

* 8 pages, 6 figures, 1 appendix 

   Access Paper or Ask Questions

  • Share via Twitter
  • Share via Facebook
  • Share via LinkedIn
  • Share via Whatsapp
  • Share via Messenger
  • Share via Email

Shapley-based explainability on the data manifold


Jun 01, 2020
Christopher Frye, Damien de Mijolla, Laurence Cowton, Megan Stanley, Ilya Feige

* 8 pages, 5 figures, 2 appendices 

   Access Paper or Ask Questions

  • Share via Twitter
  • Share via Facebook
  • Share via LinkedIn
  • Share via Whatsapp
  • Share via Messenger
  • Share via Email

Asymmetric Shapley values: incorporating causal knowledge into model-agnostic explainability


Oct 14, 2019
Christopher Frye, Ilya Feige, Colin Rowat

* 14 pages, 4 figures, 2 appendices 

   Access Paper or Ask Questions

  • Share via Twitter
  • Share via Facebook
  • Share via LinkedIn
  • Share via Whatsapp
  • Share via Messenger
  • Share via Email

Parenting: Safe Reinforcement Learning from Human Input


Feb 18, 2019
Christopher Frye, Ilya Feige

* 9 pages, 4 figures, 1 table 

   Access Paper or Ask Questions

  • Share via Twitter
  • Share via Facebook
  • Share via LinkedIn
  • Share via Whatsapp
  • Share via Messenger
  • Share via Email

JUNIPR: a Framework for Unsupervised Machine Learning in Particle Physics


Apr 25, 2018
Anders Andreassen, Ilya Feige, Christopher Frye, Matthew D. Schwartz

* 37 pages, 24 figures 

   Access Paper or Ask Questions

  • Share via Twitter
  • Share via Facebook
  • Share via LinkedIn
  • Share via Whatsapp
  • Share via Messenger
  • Share via Email