Abstract:Culture serves as a fundamental determinant of human affective processing and profoundly shapes how individuals perceive and interpret emotional stimuli. Despite this intrinsic link extant evaluations regarding cultural alignment within Large Language Models primarily prioritize declarative knowledge such as geographical facts or established societal customs. These benchmarks remain insufficient to capture the subjective interpretative variance inherent to diverse sociocultural lenses. To address this limitation, we introduce CEDAR, a multimodal benchmark constructed entirely from scenarios capturing Culturally \underline{\textsc{E}}licited \underline{\textsc{D}}istinct \underline{\textsc{A}}ffective \underline{\textsc{R}}esponses. To construct CEDAR, we implement a novel pipeline that leverages LLM-generated provisional labels to isolate instances yielding cross-cultural emotional distinctions, and subsequently derives reliable ground-truth annotations through rigorous human evaluation. The resulting benchmark comprises 10,962 instances across seven languages and 14 fine-grained emotion categories, with each language including 400 multimodal and 1,166 text-only samples. Comprehensive evaluations of 17 representative multilingual models reveal a dissociation between language consistency and cultural alignment, demonstrating that culturally grounded affective understanding remains a significant challenge for current models.
Abstract:Multimodal large language models (MLLMs) have been widely applied across various fields due to their powerful perceptual and reasoning capabilities. In the realm of psychology, these models hold promise for a deeper understanding of human emotions and behaviors. However, recent research primarily focuses on enhancing their emotion recognition abilities, leaving the substantial potential in emotion reasoning, which is crucial for improving the naturalness and effectiveness of human-machine interactions. Therefore, in this paper, we introduce a multi-turn multimodal emotion understanding and reasoning (MTMEUR) benchmark, which encompasses 1,451 video data from real-life scenarios, along with 5,101 progressive questions. These questions cover various aspects, including emotion recognition, potential causes of emotions, future action prediction, etc. Besides, we propose a multi-agent framework, where each agent specializes in a specific aspect, such as background context, character dynamics, and event details, to improve the system's reasoning capabilities. Furthermore, we conduct experiments with existing MLLMs and our agent-based method on the proposed benchmark, revealing that most models face significant challenges with this task.