Abstract:While large language models (LLMs) have shown to perform well on monolingual mathematical and commonsense reasoning, they remain unreliable for multilingual medical reasoning applications, hindering their deployment in multilingual healthcare settings. We address this by first introducing CUREMED-BENCH, a high-quality multilingual medical reasoning dataset with open-ended reasoning queries with a single verifiable answer, spanning thirteen languages, including underrepresented languages such as Amharic, Yoruba, and Swahili. Building on this dataset, we propose CURE-MED, a curriculum-informed reinforcement learning framework that integrates code-switching-aware supervised fine-tuning and Group Relative Policy Optimization to jointly improve logical correctness and language stability. Across thirteen languages, our approach consistently outperforms strong baselines and scales effectively, achieving 85.21% language consistency and 54.35% logical correctness at 7B parameters, and 94.96% language consistency and 70.04% logical correctness at 32B parameters. These results support reliable and equitable multilingual medical reasoning in LLMs. The code and dataset are available at https://cure-med.github.io/
Abstract:Machine unlearning is becoming essential for building trustworthy and compliant language models. Yet unlearning success varies considerably across individual samples: some are reliably erased, while others persist despite the same procedure. We argue that this disparity is not only a data-side phenomenon, but also reflects model-internal mechanisms that encode and protect memorized information. We study this problem from a mechanistic perspective based on model circuits--structured interaction pathways that govern how predictions are formed. We propose Circuit-guided Unlearning Difficulty (CUD), a {\em pre-unlearning} metric that assigns each sample a continuous difficulty score using circuit-level signals. Extensive experiments demonstrate that CUD reliably separates intrinsically easy and hard samples, and remains stable across unlearning methods. We identify key circuit-level patterns that reveal a mechanistic signature of difficulty: easy-to-unlearn samples are associated with shorter, shallower interactions concentrated in earlier-to-intermediate parts of the original model, whereas hard samples rely on longer and deeper pathways closer to late-stage computation. Compared to existing qualitative studies, CUD takes a first step toward a principled, fine-grained, and interpretable analysis of unlearning difficulty; and motivates the development of unlearning methods grounded in model mechanisms.
Abstract:Integrating language models (LMs) in healthcare systems holds great promise for improving medical workflows and decision-making. However, a critical barrier to their real-world adoption is the lack of reliable evaluation of their trustworthiness, especially in multilingual healthcare settings. Existing LMs are predominantly trained in high-resource languages, making them ill-equipped to handle the complexity and diversity of healthcare queries in mid- and low-resource languages, posing significant challenges for deploying them in global healthcare contexts where linguistic diversity is key. In this work, we present CLINIC, a Comprehensive Multilingual Benchmark to evaluate the trustworthiness of language models in healthcare. CLINIC systematically benchmarks LMs across five key dimensions of trustworthiness: truthfulness, fairness, safety, robustness, and privacy, operationalized through 18 diverse tasks, spanning 15 languages (covering all the major continents), and encompassing a wide array of critical healthcare topics like disease conditions, preventive actions, diagnostic tests, treatments, surgeries, and medications. Our extensive evaluation reveals that LMs struggle with factual correctness, demonstrate bias across demographic and linguistic groups, and are susceptible to privacy breaches and adversarial attacks. By highlighting these shortcomings, CLINIC lays the foundation for enhancing the global reach and safety of LMs in healthcare across diverse languages.
Abstract:Knowledge distillation (KD) is an effective method for model compression and transferring knowledge between models. However, its effect on model's robustness against spurious correlations that degrade performance on out-of-distribution data remains underexplored. This study investigates the effect of knowledge distillation on the transferability of ``debiasing'' capabilities from teacher models to student models on natural language inference (NLI) and image classification tasks. Through extensive experiments, we illustrate several key findings: (i) overall the debiasing capability of a model is undermined post-KD; (ii) training a debiased model does not benefit from injecting teacher knowledge; (iii) although the overall robustness of a model may remain stable post-distillation, significant variations can occur across different types of biases; and (iv) we pin-point the internal attention pattern and circuit that causes the distinct behavior post-KD. Given the above findings, we propose three effective solutions to improve the distillability of debiasing methods: developing high quality data for augmentation, implementing iterative knowledge distillation, and initializing student models with weights obtained from teacher models. To the best of our knowledge, this is the first study on the effect of KD on debiasing and its interenal mechanism at scale. Our findings provide understandings on how KD works and how to design better debiasing methods.
Abstract:While multimodal AI systems (models jointly trained on heterogeneous data types such as text, time series, graphs, and images) have become ubiquitous and achieved remarkable performance across high-stakes applications, transparent and accurate explanation algorithms are crucial for their safe deployment and ensure user trust. However, most existing explainability techniques remain unimodal, generating modality-specific feature attributions, concepts, or circuit traces in isolation and thus failing to capture cross-modal interactions. This paper argues that such unimodal explanations systematically misrepresent and fail to capture the cross-modal influence that drives multimodal model decisions, and the community should stop relying on them for interpreting multimodal models. To support our position, we outline key principles for multimodal explanations grounded in modality: Granger-style modality influence (controlled ablations to quantify how removing one modality changes the explanation for another), Synergistic faithfulness (explanations capture the model's predictive power when modalities are combined), and Unified stability (explanations remain consistent under small, cross-modal perturbations). This targeted shift to multimodal explanations will help the community uncover hidden shortcuts, mitigate modality bias, improve model reliability, and enhance safety in high-stakes settings where incomplete explanations can have serious consequences.
Abstract:While reasoning and multilingual capabilities in Language Models (LMs) have achieved remarkable progress in recent years, their integration into a unified paradigm, multilingual reasoning, is at a nascent stage. Multilingual reasoning requires language models to handle logical reasoning across languages while addressing misalignment, biases, and challenges in low-resource settings. This survey provides the first in-depth review of multilingual reasoning in LMs. In this survey, we provide a systematic overview of existing methods that leverage LMs for multilingual reasoning, specifically outlining the challenges, motivations, and foundational aspects of applying language models to reason across diverse languages. We provide an overview of the standard data resources used for training multilingual reasoning in LMs and the evaluation benchmarks employed to assess their multilingual capabilities. Next, we analyze various state-of-the-art methods and their performance on these benchmarks. Finally, we explore future research opportunities to improve multilingual reasoning in LMs, focusing on enhancing their ability to handle diverse languages and complex reasoning tasks.




Abstract:Large Language Models (LLMs) are prevalent in modern applications but often memorize training data, leading to privacy breaches and copyright issues. Existing research has mainly focused on posthoc analyses, such as extracting memorized content or developing memorization metrics, without exploring the underlying architectural factors that contribute to memorization. In this work, we investigate memorization from an architectural lens by analyzing how attention modules at different layers impact its memorization and generalization performance. Using attribution techniques, we systematically intervene in the LLM architecture by bypassing attention modules at specific blocks while keeping other components like layer normalization and MLP transformations intact. We provide theorems analyzing our intervention mechanism from a mathematical view, bounding the difference in layer outputs with and without our attributions. Our theoretical and empirical analyses reveal that attention modules in deeper transformer blocks are primarily responsible for memorization, whereas earlier blocks are crucial for the models generalization and reasoning capabilities. We validate our findings through comprehensive experiments on different LLM families (Pythia and GPTNeo) and five benchmark datasets. Our insights offer a practical approach to mitigate memorization in LLMs while preserving their performance, contributing to safer and more ethical deployment in real world applications.
Abstract:Large Vision-Language Models (LVLMs) have demonstrated remarkable performance in performing complex multimodal tasks. However, they are still plagued by object hallucination: the misidentification or misclassification of objects present in images. To this end, we propose HALLUCINOGEN, a novel visual question answering (VQA) object hallucination attack benchmark that utilizes diverse contextual reasoning prompts to evaluate object hallucination in state-of-the-art LVLMs. We design a series of contextual reasoning hallucination prompts to evaluate LVLMs' ability to accurately identify objects in a target image while asking them to perform diverse visual-language tasks such as identifying, locating or performing visual reasoning around specific objects. Further, we extend our benchmark to high-stakes medical applications and introduce MED-HALLUCINOGEN, hallucination attacks tailored to the biomedical domain, and evaluate the hallucination performance of LVLMs on medical images, a critical area where precision is crucial. Finally, we conduct extensive evaluations of eight LVLMs and two hallucination mitigation strategies across multiple datasets to show that current generic and medical LVLMs remain susceptible to hallucination attacks.




Abstract:Large language models have emerged as powerful tools for general intelligence, showcasing advanced natural language processing capabilities that find applications across diverse domains. Despite their impressive performance, recent studies have highlighted the potential for significant enhancements in LLMs' task-specific performance through fine-tuning strategies like Reinforcement Learning with Human Feedback (RLHF), supervised fine-tuning (SFT), and Quantized Low-Rank Adapters (Q-LoRA) method. However, previous works have shown that while fine-tuning offers significant performance gains, it also leads to challenges such as catastrophic forgetting and privacy and safety risks. To this end, there has been little to no work in \textit{understanding the impact of fine-tuning on the reasoning capabilities of LLMs}. Our research investigates the effect of fine-tuning on the reasoning abilities of LLMs, addressing critical questions regarding the impact of task-specific fine-tuning on overall reasoning capabilities, the influence of fine-tuning on Chain-of-Thought (CoT) reasoning performance, and the implications for the faithfulness of CoT reasonings. By exploring these dimensions, our study shows the impact of fine-tuning on LLM reasoning capabilities, where the faithfulness of CoT reasoning, on average across four datasets, decreases, highlighting potential shifts in internal mechanisms of the LLMs resulting from fine-tuning processes.




Abstract:The widespread practice of indiscriminate data scraping to fine-tune language models (LMs) raises significant legal and ethical concerns, particularly regarding compliance with data protection laws such as the General Data Protection Regulation (GDPR). This practice often results in the unauthorized use of personal information, prompting growing debate within the academic and regulatory communities. Recent works have introduced the concept of generating unlearnable datasets (by adding imperceptible noise to the clean data), such that the underlying model achieves lower loss during training but fails to generalize to the unseen test setting. Though somewhat effective, these approaches are predominantly designed for images and are limited by several practical constraints like requiring knowledge of the target model. To this end, we introduce RegText, a framework that injects imperceptible spurious correlations into natural language datasets, effectively rendering them unlearnable without affecting semantic content. We demonstrate RegText's utility through rigorous empirical analysis of small and large LMs. Notably, RegText can restrict newer models like GPT-4o and Llama from learning on our generated data, resulting in a drop in their test accuracy compared to their zero-shot performance and paving the way for generating unlearnable text to protect public data.