Abstract:Bird's-Eye-View (BEV) representation offers a metric-scaled planar workspace, facilitating the simplification of 6-DoF ego-motion to a more robust 3-DoF model for monocular visual odometry (MVO) in intelligent transportation systems. However, existing BEV methods suffer from sparse supervision signals and information loss during perspective-to-BEV projection. We present BEV-ODOM2, an enhanced framework addressing both limitations without additional annotations. Our approach introduces: (1) dense BEV optical flow supervision constructed from 3-DoF pose ground truth for pixel-level guidance; (2) PV-BEV fusion that computes correlation volumes before projection to preserve 6-DoF motion cues while maintaining scale consistency. The framework employs three supervision levels derived solely from pose data: dense BEV flow, 5-DoF for the PV branch, and final 3-DoF output. Enhanced rotation sampling further balances diverse motion patterns in training. Extensive evaluation on KITTI, NCLT, Oxford, and our newly collected ZJH-VO multi-scale dataset demonstrates state-of-the-art performance, achieving 40 improvement in RTE compared to previous BEV methods. The ZJH-VO dataset, covering diverse ground vehicle scenarios from underground parking to outdoor plazas, is publicly available to facilitate future research.
Abstract:Identifying an appropriate radius for unbiased kernel estimation is crucial for the efficiency of radiance estimation. However, determining both the radius and unbiasedness still faces big challenges. In this paper, we first propose a statistical model of photon samples and associated contributions for progressive kernel estimation, under which the kernel estimation is unbiased if the null hypothesis of this statistical model stands. Then, we present a method to decide whether to reject the null hypothesis about the statistical population (i.e., photon samples) by the F-test in the Analysis of Variance. Hereby, we implement a progressive photon mapping (PPM) algorithm, wherein the kernel radius is determined by this hypothesis test for unbiased radiance estimation. Secondly, we propose VCM+, a reinforcement of Vertex Connection and Merging (VCM), and derive its theoretically unbiased formulation. VCM+ combines hypothesis testing-based PPM with bidirectional path tracing (BDPT) via multiple importance sampling (MIS), wherein our kernel radius can leverage the contributions from PPM and BDPT. We test our new algorithms, improved PPM and VCM+, on diverse scenarios with different lighting settings. The experimental results demonstrate that our method can alleviate light leaks and visual blur artifacts of prior radiance estimate algorithms. We also evaluate the asymptotic performance of our approach and observe an overall improvement over the baseline in all testing scenarios.