Abstract:Large vision models (LVM) based gait recognition has achieved impressive performance. However, existing LVM-based approaches may overemphasize gait priors while neglecting the intrinsic value of LVM itself, particularly the rich, distinct representations across its multi-layers. To adequately unlock LVM's potential, this work investigates the impact of layer-wise representations on downstream recognition tasks. Our analysis reveals that LVM's intermediate layers offer complementary properties across tasks, integrating them yields an impressive improvement even without rich well-designed gait priors. Building on this insight, we propose a simple and universal baseline for LVM-based gait recognition, termed BiggerGait. Comprehensive evaluations on CCPG, CAISA-B*, SUSTech1K, and CCGR\_MINI validate the superiority of BiggerGait across both within- and cross-domain tasks, establishing it as a simple yet practical baseline for gait representation learning. All the models and code will be publicly available.
Abstract:The partial domain adaptation (PDA) challenge is a prevalent issue in industrial fault diagnosis. Current PDA approaches primarily rely on adversarial learning for domain adaptation and use reweighting strategies to exclude source samples deemed outliers. However, the transferability of features diminishes from general feature extraction layers to higher task-specific layers in adversarial learning-based adaptation modules, leading to significant negative transfer in PDA settings. We term this issue the adaptation-discrimination paradox (ADP). Furthermore, reweighting strategies often suffer from unreliable pseudo-labels, compromising their effectiveness. Drawing inspiration from traditional classification settings where such partial challenge is not a concern, we propose a novel PDA framework called Interactive Residual Domain Adaptation Networks (IRDAN), which introduces domain-wise models for each domain to provide a new perspective for the PDA challenge. Each domain-wise model is equipped with a residual domain adaptation (RDA) block to mitigate the ADP problem. Additionally, we introduce a confident information flow via an interactive learning strategy, training the modules of IRDAN sequentially to avoid cross-interference. We also establish a reliable stopping criterion for selecting the best-performing model, ensuring practical usability in real-world applications. Experiments have demonstrated the superior performance of the proposed IRDAN.
Abstract:Modern industrial fault diagnosis tasks often face the combined challenge of distribution discrepancy and bi-imbalance. Existing domain adaptation approaches pay little attention to the prevailing bi-imbalance, leading to poor domain adaptation performance or even negative transfer. In this work, we propose a self-degraded contrastive domain adaptation (Sd-CDA) diagnosis framework to handle the domain discrepancy under the bi-imbalanced data. It first pre-trains the feature extractor via imbalance-aware contrastive learning based on model pruning to learn the feature representation efficiently in a self-supervised manner. Then it forces the samples away from the domain boundary based on supervised contrastive domain adversarial learning (SupCon-DA) and ensures the features generated by the feature extractor are discriminative enough. Furthermore, we propose the pruned contrastive domain adversarial learning (PSupCon-DA) to pay automatically re-weighted attention to the minorities to enhance the performance towards bi-imbalanced data. We show the superiority of the proposed method via two experiments.