Abstract:The development of advanced packaging is essential in the semiconductor manufacturing industry. However, non-destructive testing (NDT) of advanced packaging becomes increasingly challenging due to the depth and complexity of the layers involved. In such a scenario, Magnetic field imaging (MFI) enables the imaging of magnetic fields generated by currents. For MFI to be effective in NDT, the magnetic fields must be converted into current density. This conversion has typically relied solely on a Fast Fourier Transform (FFT) for magnetic field inversion; however, the existing approach does not consider eddy current effects or image misalignment in the test setup. In this paper, we present a spatial-physics informed model (SPIM) designed for a 3D spiral sample scanned using Superconducting QUantum Interference Device (SQUID) microscopy. The SPIM encompasses three key components: i) magnetic image enhancement by aligning all the "sharp" wire field signals to mitigate the eddy current effect using both in-phase (I-channel) and quadrature-phase (Q-channel) images; (ii) magnetic image alignment that addresses skew effects caused by any misalignment of the scanning SQUID microscope relative to the wire segments; and (iii) an inversion method for converting magnetic fields to magnetic currents by integrating the Biot-Savart Law with FFT. The results show that the SPIM improves I-channel sharpness by 0.3% and reduces Q-channel sharpness by 25%. Also, we were able to remove rotational and skew misalignments of 0.30 in a real image. Overall, SPIM highlights the potential of combining spatial analysis with physics-driven models in practical applications.
Abstract:The detection of flooded areas using high-resolution synthetic aperture radar (SAR) imagery is a critical task with applications in crisis and disaster management, as well as environmental resource planning. However, the complex nature of SAR images presents a challenge that often leads to an overestimation of the flood extent. To address this issue, we propose a novel differential attention metric-based network (DAM-Net) in this study. The DAM-Net comprises two key components: a weight-sharing Siamese backbone to obtain multi-scale change features of multi-temporal images and tokens containing high-level semantic information of water-body changes, and a temporal differential fusion (TDF) module that integrates semantic tokens and change features to generate flood maps with reduced speckle noise. Specifically, the backbone is split into multiple stages. In each stage, we design three modules, namely, temporal-wise feature extraction (TWFE), cross-temporal change attention (CTCA), and temporal-aware change enhancement (TACE), to effectively extract the change features. In TACE of the last stage, we introduce a class token to record high-level semantic information of water-body changes via the attention mechanism. Another challenge faced by data-driven deep learning algorithms is the limited availability of flood detection datasets. To overcome this, we have created the S1GFloods open-source dataset, a global-scale high-resolution Sentinel-1 SAR image pairs dataset covering 46 global flood events between 2015 and 2022. The experiments on the S1GFloods dataset using the proposed DAM-Net showed top results compared to state-of-the-art methods in terms of overall accuracy, F1-score, and IoU, which reached 97.8%, 96.5%, and 93.2%, respectively. Our dataset and code will be available online at https://github.com/Tamer-Saleh/S1GFlood-Detection.