Abstract:Recent years have seen substantial advances in our understanding of high-dimensional ridge regression, but existing theories assume that training examples are independent. By leveraging recent techniques from random matrix theory and free probability, we provide sharp asymptotics for the in- and out-of-sample risks of ridge regression when the data points have arbitrary correlations. We demonstrate that in this setting, the generalized cross validation estimator (GCV) fails to correctly predict the out-of-sample risk. However, in the case where the noise residuals have the same correlations as the data points, one can modify the GCV to yield an efficiently-computable unbiased estimator that concentrates in the high-dimensional limit, which we dub CorrGCV. We further extend our asymptotic analysis to the case where the test point has nontrivial correlations with the training set, a setting often encountered in time series forecasting. Assuming knowledge of the correlation structure of the time series, this again yields an extension of the GCV estimator, and sharply characterizes the degree to which such test points yield an overly optimistic prediction of long-time risk. We validate the predictions of our theory across a variety of high dimensional data.
Abstract:We investigate the behavior of the Nadaraya-Watson kernel smoothing estimator in high dimensions using its relationship to the random energy model and to dense associative memories.
Abstract:The vulnerability of neural network classifiers to adversarial attacks is a major obstacle to their deployment in safety-critical applications. Regularization of network parameters during training can be used to improve adversarial robustness and generalization performance. Usually, the network is regularized end-to-end, with parameters at all layers affected by regularization. However, in settings where learning representations is key, such as self-supervised learning (SSL), layers after the feature representation will be discarded when performing inference. For these models, regularizing up to the feature space is more suitable. To this end, we propose a new spectral regularizer for representation learning that encourages black-box adversarial robustness in downstream classification tasks. In supervised classification settings, we show empirically that this method is more effective in boosting test accuracy and robustness than previously-proposed methods that regularize all layers of the network. We then show that this method improves the adversarial robustness of classifiers using representations learned with self-supervised training or transferred from another classification task. In all, our work begins to unveil how representational structure affects adversarial robustness.
Abstract:Hyperbolic spaces have increasingly been recognized for their outstanding performance in handling data with inherent hierarchical structures compared to their Euclidean counterparts. However, learning in hyperbolic spaces poses significant challenges. In particular, extending support vector machines to hyperbolic spaces is in general a constrained non-convex optimization problem. Previous and popular attempts to solve hyperbolic SVMs, primarily using projected gradient descent, are generally sensitive to hyperparameters and initializations, often leading to suboptimal solutions. In this work, by first rewriting the problem into a polynomial optimization, we apply semidefinite relaxation and sparse moment-sum-of-squares relaxation to effectively approximate the optima. From extensive empirical experiments, these methods are shown to perform better than the projected gradient descent approach.
Abstract:In-context learning (ICL), the remarkable ability to solve a task from only input exemplars, has commonly been assumed to be a unique hallmark of Transformer models. In this study, we demonstrate that multi-layer perceptrons (MLPs) can also learn in-context. Moreover, we find that MLPs, and the closely related MLP-Mixer models, learn in-context competitively with Transformers given the same compute budget. We further show that MLPs outperform Transformers on a subset of ICL tasks designed to test relational reasoning. These results suggest that in-context learning is not exclusive to Transformers and highlight the potential of exploring this phenomenon beyond attention-based architectures. In addition, MLPs' surprising success on relational tasks challenges prior assumptions about simple connectionist models. Altogether, our results endorse the broad trend that ``less inductive bias is better" and contribute to the growing interest in all-MLP alternatives to task-specific architectures.
Abstract:In this work, we analyze various scaling limits of the training dynamics of transformer models in the feature learning regime. We identify the set of parameterizations that admit well-defined infinite width and depth limits, allowing the attention layers to update throughout training--a relevant notion of feature learning in these models. We then use tools from dynamical mean field theory (DMFT) to analyze various infinite limits (infinite key/query dimension, infinite heads, and infinite depth) which have different statistical descriptions depending on which infinite limit is taken and how attention layers are scaled. We provide numerical evidence of convergence to the limits and discuss how the parameterization qualitatively influences learned features.
Abstract:Transformers have a remarkable ability to learn and execute tasks based on examples provided within the input itself, without explicit prior training. It has been argued that this capability, known as in-context learning (ICL), is a cornerstone of Transformers' success, yet questions about the necessary sample complexity, pretraining task diversity, and context length for successful ICL remain unresolved. Here, we provide a precise answer to these questions in an exactly solvable model of ICL of a linear regression task by linear attention. We derive sharp asymptotics for the learning curve in a phenomenologically-rich scaling regime where the token dimension is taken to infinity; the context length and pretraining task diversity scale proportionally with the token dimension; and the number of pretraining examples scales quadratically. We demonstrate a double-descent learning curve with increasing pretraining examples, and uncover a phase transition in the model's behavior between low and high task diversity regimes: In the low diversity regime, the model tends toward memorization of training tasks, whereas in the high diversity regime, it achieves genuine in-context learning and generalization beyond the scope of pretrained tasks. These theoretical insights are empirically validated through experiments with both linear attention and full nonlinear Transformer architectures.
Abstract:This paper presents a succinct derivation of the training and generalization performance of a variety of high-dimensional ridge regression models using the basic tools of random matrix theory and free probability. We provide an introduction and review of recent results on these topics, aimed at readers with backgrounds in physics and deep learning. Analytic formulas for the training and generalization errors are obtained in a few lines of algebra directly from the properties of the $S$-transform of free probability. This allows for a straightforward identification of the sources of power-law scaling in model performance. We compute the generalization error of a broad class of random feature models. We find that in all models, the $S$-transform corresponds to the train-test generalization gap, and yields an analogue of the generalized-cross-validation estimator. Using these techniques, we derive fine-grained bias-variance decompositions for a very general class of random feature models with structured covariates. These novel results allow us to discover a scaling regime for random feature models where the variance due to the features limits performance in the overparameterized setting. We also demonstrate how anisotropic weight structure in random feature models can limit performance and lead to nontrivial exponents for finite-width corrections in the overparameterized setting. Our results extend and provide a unifying perspective on earlier models of neural scaling laws.
Abstract:On a variety of tasks, the performance of neural networks predictably improves with training time, dataset size and model size across many orders of magnitude. This phenomenon is known as a neural scaling law. Of fundamental importance is the compute-optimal scaling law, which reports the performance as a function of units of compute when choosing model sizes optimally. We analyze a random feature model trained with gradient descent as a solvable model of network training and generalization. This reproduces many observations about neural scaling laws. First, our model makes a prediction about why the scaling of performance with training time and with model size have different power law exponents. Consequently, the theory predicts an asymmetric compute-optimal scaling rule where the number of training steps are increased faster than model parameters, consistent with recent empirical observations. Second, it has been observed that early in training, networks converge to their infinite-width dynamics at a rate $1/\textit{width}$ but at late time exhibit a rate $\textit{width}^{-c}$, where $c$ depends on the structure of the architecture and task. We show that our model exhibits this behavior. Lastly, our theory shows how the gap between training and test loss can gradually build up over time due to repeated reuse of data.
Abstract:We propose that the grokking phenomenon, where the train loss of a neural network decreases much earlier than its test loss, can arise due to a neural network transitioning from lazy training dynamics to a rich, feature learning regime. To illustrate this mechanism, we study the simple setting of vanilla gradient descent on a polynomial regression problem with a two layer neural network which exhibits grokking without regularization in a way that cannot be explained by existing theories. We identify sufficient statistics for the test loss of such a network, and tracking these over training reveals that grokking arises in this setting when the network first attempts to fit a kernel regression solution with its initial features, followed by late-time feature learning where a generalizing solution is identified after train loss is already low. We find that the key determinants of grokking are the rate of feature learning -- which can be controlled precisely by parameters that scale the network output -- and the alignment of the initial features with the target function $y(x)$. We argue this delayed generalization arises when (1) the top eigenvectors of the initial neural tangent kernel and the task labels $y(x)$ are misaligned, but (2) the dataset size is large enough so that it is possible for the network to generalize eventually, but not so large that train loss perfectly tracks test loss at all epochs, and (3) the network begins training in the lazy regime so does not learn features immediately. We conclude with evidence that this transition from lazy (linear model) to rich training (feature learning) can control grokking in more general settings, like on MNIST, one-layer Transformers, and student-teacher networks.