Abstract:Counterfactual explanations for black-box models aim to pr ovide insight into an algorithmic decision to its recipient. For a binary classification problem an individual counterfactual details which features might be changed for the model to infer the opposite class. High-dimensional feature spaces that are typical of machine learning classification models admit many possible counterfactual examples to a decision, and so it is important to identify additional criteria to select the most useful counterfactuals. In this paper, we explore the idea that the counterfactuals should be maximally informative when considering the knowledge of a specific individual about the underlying classifier. To quantify this information gain we explicitly model the knowledge of the individual, and assess the uncertainty of predictions which the individual makes by the width of a conformal prediction interval. Regions of feature space where the prediction interval is wide correspond to areas where the confidence in decision making is low, and an additional counterfactual example might be more informative to an individual. To explore and evaluate our individualised conformal prediction interval counterfactuals (CPICFs), first we present a synthetic data set on a hypercube which allows us to fully visualise the decision boundary, conformal intervals via three different methods, and resultant CPICFs. Second, in this synthetic data set we explore the impact of a single CPICF on the knowledge of an individual locally around the original query. Finally, in both our synthetic data set and a complex real world dataset with a combination of continuous and discrete variables, we measure the utility of these counterfactuals via data augmentation, testing the performance on a held out set.
Abstract:It is well recognised that ensuring fair AI systems is a complex sociotechnical challenge, which requires careful deliberation and continuous oversight across all stages of a system's lifecycle, from defining requirements to model deployment and deprovisioning. Dynamic argument-based assurance cases, which present structured arguments supported by evidence, have emerged as a systematic approach to evaluating and mitigating safety risks and hazards in AI-enabled system development and have also been extended to deal with broader normative goals such as fairness and explainability. This paper introduces a systems-engineering-driven framework, supported by software tooling, to operationalise a dynamic approach to argument-based assurance in two stages. In the first stage, during the requirements planning phase, a multi-disciplinary and multi-stakeholder team define goals and claims to be established (and evidenced) by conducting a comprehensive fairness governance process. In the second stage, a continuous monitoring interface gathers evidence from existing artefacts (e.g. metrics from automated tests), such as model, data, and use case documentation, to support these arguments dynamically. The framework's effectiveness is demonstrated through an illustrative case study in finance, with a focus on supporting fairness-related arguments.
Abstract:Large-language models are capable of completing a variety of tasks, but remain unpredictable and intractable. Representation engineering seeks to resolve this problem through a new approach utilizing samples of contrasting inputs to detect and edit high-level representations of concepts such as honesty, harmfulness or power-seeking. We formalize the goals and methods of representation engineering to present a cohesive picture of work in this emerging discipline. We compare it with alternative approaches, such as mechanistic interpretability, prompt-engineering and fine-tuning. We outline risks such as performance decrease, compute time increases and steerability issues. We present a clear agenda for future research to build predictable, dynamic, safe and personalizable LLMs.
Abstract:A key task in managing distributed, sensitive data is to measure the extent to which a distribution changes. Understanding this drift can effectively support a variety of federated learning and analytics tasks. However, in many practical settings sharing such information can be undesirable (e.g., for privacy concerns) or infeasible (e.g., for high communication costs). In this work, we describe novel algorithmic approaches for estimating the KL divergence of data across federated models of computation, under differential privacy. We analyze their theoretical properties and present an empirical study of their performance. We explore parameter settings that optimize the accuracy of the algorithm catering to each of the settings; these provide sub-variations that are applicable to real-world tasks, addressing different context- and application-specific trust level requirements. Our experimental results confirm that our private estimators achieve accuracy comparable to a baseline algorithm without differential privacy guarantees.
Abstract:Statistical heterogeneity is a measure of how skewed the samples of a dataset are. It is a common problem in the study of differential privacy that the usage of a statistically heterogeneous dataset results in a significant loss of accuracy. In federated scenarios, statistical heterogeneity is more likely to happen, and so the above problem is even more pressing. We explore the three most promising ways to measure statistical heterogeneity and give formulae for their accuracy, while simultaneously incorporating differential privacy. We find the optimum privacy parameters via an analytic mechanism, which incorporates root finding methods. We validate the main theorems and related hypotheses experimentally, and test the robustness of the analytic mechanism to different heterogeneity levels. The analytic mechanism in a distributed setting delivers superior accuracy to all combinations involving the classic mechanism and/or the centralized setting. All measures of statistical heterogeneity do not lose significant accuracy when a heterogeneous sample is used.
Abstract:We present a dependency model tailored to the context of current challenges in data strategies and make recommendations for the cybersecurity community. The model can be used for cyber risk estimation and assessment and generic risk impact assessment.
Abstract:Since its implementation in May 2018, the General Data Protection Regulation (GDPR) has prompted businesses to revisit and revise their data handling practices to ensure compliance. The privacy policy, which serves as the primary means of informing users about their privacy rights and the data practices of companies, has been significantly updated by numerous businesses post-GDPR implementation. However, many privacy policies remain packed with technical jargon, lengthy explanations, and vague descriptions of data practices and user rights. This makes it a challenging task for users and regulatory authorities to manually verify the GDPR compliance of these privacy policies. In this study, we aim to address the challenge of compliance analysis between GDPR (Article 13) and privacy policies for 5G networks. We manually collected privacy policies from almost 70 different 5G MNOs, and we utilized an automated BERT-based model for classification. We show that an encouraging 51$\%$ of companies demonstrate a strong adherence to GDPR. In addition, we present the first study that provides current empirical evidence on the readability of privacy policies for 5G network. we adopted readability analysis toolset that incorporates various established readability metrics. The findings empirically show that the readability of the majority of current privacy policies remains a significant challenge. Hence, 5G providers need to invest considerable effort into revising these documents to enhance both their utility and the overall user experience.
Abstract:Releasing open-source large language models (LLMs) presents a dual-use risk since bad actors can easily fine-tune these models for harmful purposes. Even without the open release of weights, weight stealing and fine-tuning APIs make closed models vulnerable to harmful fine-tuning attacks (HFAs). While safety measures like preventing jailbreaks and improving safety guardrails are important, such measures can easily be reversed through fine-tuning. In this work, we propose Representation Noising (RepNoise), a defence mechanism that is effective even when attackers have access to the weights and the defender no longer has any control. RepNoise works by removing information about harmful representations such that it is difficult to recover them during fine-tuning. Importantly, our defence is also able to generalize across different subsets of harm that have not been seen during the defence process. Our method does not degrade the general capability of LLMs and retains the ability to train the model on harmless tasks. We provide empirical evidence that the effectiveness of our defence lies in its "depth": the degree to which information about harmful representations is removed across all layers of the LLM.
Abstract:Face image synthesis detection is considerably gaining attention because of the potential negative impact on society that this type of synthetic data brings. In this paper, we propose a data-agnostic solution to detect the face image synthesis process. Specifically, our solution is based on an anomaly detection framework that requires only real data to learn the inference process. It is therefore data-agnostic in the sense that it requires no synthetic face images. The solution uses the posterior probability with respect to the reference data to determine if new samples are synthetic or not. Our evaluation results using different synthesizers show that our solution is very competitive against the state-of-the-art, which requires synthetic data for training.
Abstract:Face image synthesis is gaining more attention in computer security due to concerns about its potential negative impacts, including those related to fake biometrics. Hence, building models that can detect the synthesized face images is an important challenge to tackle. In this paper, we propose a fusion-based strategy to detect face image synthesis while providing resiliency to several attacks. The proposed strategy uses a late fusion of the outputs computed by several undisclosed models by relying on random polynomial coefficients and exponents to conceal a new feature space. Unlike existing concealing solutions, our strategy requires no quantization, which helps to preserve the feature space. Our experiments reveal that our strategy achieves state-of-the-art performance while providing protection against poisoning, perturbation, backdoor, and reverse model attacks.