Abstract:In the realm of cancer treatment, summarizing adverse drug events (ADEs) reported by patients using prescribed drugs is crucial for enhancing pharmacovigilance practices and improving drug-related decision-making. While the volume and complexity of pharmacovigilance data have increased, existing research in this field has predominantly focused on general diseases rather than specifically addressing cancer. This work introduces the task of grouped summarization of adverse drug events reported by multiple patients using the same drug for cancer treatment. To address the challenge of limited resources in cancer pharmacovigilance, we present the MultiLabeled Cancer Adverse Drug Reaction and Summarization (MCADRS) dataset. This dataset includes pharmacovigilance posts detailing patient concerns regarding drug efficacy and adverse effects, along with extracted labels for drug names, adverse drug events, severity, and adversity of reactions, as well as summaries of ADEs for each drug. Additionally, we propose the Grouping and Abstractive Summarization of Cancer Adverse Drug events (GASCADE) framework, a novel pipeline that combines the information extraction capabilities of Large Language Models (LLMs) with the summarization power of the encoder-decoder T5 model. Our work is the first to apply alignment techniques, including advanced algorithms like Direct Preference Optimization, to encoder-decoder models using synthetic datasets for summarization tasks. Through extensive experiments, we demonstrate the superior performance of GASCADE across various metrics, validated through both automated assessments and human evaluations. This multitasking approach enhances drug-related decision-making and fosters a deeper understanding of patient concerns, paving the way for advancements in personalized and responsive cancer care. The code and dataset used in this work are publicly available.
Abstract:The task of text-to-image generation has encountered significant challenges when applied to literary works, especially poetry. Poems are a distinct form of literature, with meanings that frequently transcend beyond the literal words. To address this shortcoming, we propose a PoemToPixel framework designed to generate images that visually represent the inherent meanings of poems. Our approach incorporates the concept of prompt tuning in our image generation framework to ensure that the resulting images closely align with the poetic content. In addition, we propose the PoeKey algorithm, which extracts three key elements in the form of emotions, visual elements, and themes from poems to form instructions which are subsequently provided to a diffusion model for generating corresponding images. Furthermore, to expand the diversity of the poetry dataset across different genres and ages, we introduce MiniPo, a novel multimodal dataset comprising 1001 children's poems and images. Leveraging this dataset alongside PoemSum, we conducted both quantitative and qualitative evaluations of image generation using our PoemToPixel framework. This paper demonstrates the effectiveness of our approach and offers a fresh perspective on generating images from literary sources.