Abstract:The human brain can self-organize rich and diverse sparse neural pathways to incrementally master hundreds of cognitive tasks. However, most existing continual learning algorithms for deep artificial and spiking neural networks are unable to adequately auto-regulate the limited resources in the network, which leads to performance drop along with energy consumption rise as the increase of tasks. In this paper, we propose a brain-inspired continual learning algorithm with adaptive reorganization of neural pathways, which employs Self-Organizing Regulation networks to reorganize the single and limited Spiking Neural Network (SOR-SNN) into rich sparse neural pathways to efficiently cope with incremental tasks. The proposed model demonstrates consistent superiority in performance, energy consumption, and memory capacity on diverse continual learning tasks ranging from child-like simple to complex tasks, as well as on generalized CIFAR100 and ImageNet datasets. In particular, the SOR-SNN model excels at learning more complex tasks as well as more tasks, and is able to integrate the past learned knowledge with the information from the current task, showing the backward transfer ability to facilitate the old tasks. Meanwhile, the proposed model exhibits self-repairing ability to irreversible damage and for pruned networks, could automatically allocate new pathway from the retained network to recover memory for forgotten knowledge.
Abstract:Deep neural network-based systems have significantly improved the performance of speaker diarization tasks. However, end-to-end neural diarization (EEND) systems often struggle to generalize to scenarios with an unseen number of speakers, while target speaker voice activity detection (TS-VAD) systems tend to be overly complex. In this paper, we propose a simple attention-based encoder-decoder network for end-to-end neural diarization (AED-EEND). In our training process, we introduce a teacher-forcing strategy to address the speaker permutation problem, leading to faster model convergence. For evaluation, we propose an iterative decoding method that outputs diarization results for each speaker sequentially. Additionally, we propose an Enhancer module to enhance the frame-level speaker embeddings, enabling the model to handle scenarios with an unseen number of speakers. We also explore replacing the transformer encoder with a Conformer architecture, which better models local information. Furthermore, we discovered that commonly used simulation datasets for speaker diarization have a much higher overlap ratio compared to real data. We found that using simulated training data that is more consistent with real data can achieve an improvement in consistency. Extensive experimental validation demonstrates the effectiveness of our proposed methodologies. Our best system achieved a new state-of-the-art diarization error rate (DER) performance on all the CALLHOME (10.08%), DIHARD II (24.64%), and AMI (13.00%) evaluation benchmarks, when no oracle voice activity detection (VAD) is used. Beyond speaker diarization, our AED-EEND system also shows remarkable competitiveness as a speech type detection model.
Abstract:Music editing primarily entails the modification of instrument tracks or remixing in the whole, which offers a novel reinterpretation of the original piece through a series of operations. These music processing methods hold immense potential across various applications but demand substantial expertise. Prior methodologies, although effective for image and audio modifications, falter when directly applied to music. This is attributed to music's distinctive data nature, where such methods can inadvertently compromise the intrinsic harmony and coherence of music. In this paper, we develop InstructME, an Instruction guided Music Editing and remixing framework based on latent diffusion models. Our framework fortifies the U-Net with multi-scale aggregation in order to maintain consistency before and after editing. In addition, we introduce chord progression matrix as condition information and incorporate it in the semantic space to improve melodic harmony while editing. For accommodating extended musical pieces, InstructME employs a chunk transformer, enabling it to discern long-term temporal dependencies within music sequences. We tested InstructME in instrument-editing, remixing, and multi-round editing. Both subjective and objective evaluations indicate that our proposed method significantly surpasses preceding systems in music quality, text relevance and harmony. Demo samples are available at https://musicedit.github.io/
Abstract:Children possess the ability to learn multiple cognitive tasks sequentially, which is a major challenge toward the long-term goal of artificial general intelligence. Existing continual learning frameworks are usually applicable to Deep Neural Networks (DNNs) and lack the exploration on more brain-inspired, energy-efficient Spiking Neural Networks (SNNs). Drawing on continual learning mechanisms during child growth and development, we propose Dynamic Structure Development of Spiking Neural Networks (DSD-SNN) for efficient and adaptive continual learning. When learning a sequence of tasks, the DSD-SNN dynamically assigns and grows new neurons to new tasks and prunes redundant neurons, thereby increasing memory capacity and reducing computational overhead. In addition, the overlapping shared structure helps to quickly leverage all acquired knowledge to new tasks, empowering a single network capable of supporting multiple incremental tasks (without the separate sub-network mask for each task). We validate the effectiveness of the proposed model on multiple class incremental learning and task incremental learning benchmarks. Extensive experiments demonstrated that our model could significantly improve performance, learning speed and memory capacity, and reduce computational overhead. Besides, our DSD-SNN model achieves comparable performance with the DNNs-based methods, and significantly outperforms the state-of-the-art (SOTA) performance for existing SNNs-based continual learning methods.
Abstract:The mismatch between close-set training and open-set testing usually leads to significant performance degradation for speaker verification task. For existing loss functions, metric learning-based objectives depend strongly on searching effective pairs which might hinder further improvements. And popular multi-classification methods are usually observed with degradation when evaluated on unseen speakers. In this work, we introduce SphereFace2 framework which uses several binary classifiers to train the speaker model in a pair-wise manner instead of performing multi-classification. Benefiting from this learning paradigm, it can efficiently alleviate the gap between training and evaluation. Experiments conducted on Voxceleb show that the SphereFace2 outperforms other existing loss functions, especially on hard trials. Besides, large margin fine-tuning strategy is proven to be compatible with it for further improvements. Finally, SphereFace2 also shows its strong robustness to class-wise noisy labels which has the potential to be applied in the semi-supervised training scenario with inaccurate estimated pseudo labels. Codes are available in https://github.com/Hunterhuan/sphereface2_speaker_verification
Abstract:This report showcases the results achieved using the wespeaker toolkit for the VoxSRC2023 Challenge. Our aim is to provide participants, especially those with limited experience, with clear and straightforward guidelines to develop their initial systems. Via well-structured recipes and strong results, we hope to offer an accessible and good enough start point for all interested individuals. In this report, we describe the results achieved on the VoxSRC2023 dev set using the pretrained models, you can check the CodaLab evaluation server for the results on the evaluation set.
Abstract:This paper proposes a novel Attention-based Encoder-Decoder network for End-to-End Neural speaker Diarization (AED-EEND). In AED-EEND system, we incorporate the target speaker enrollment information used in target speaker voice activity detection (TS-VAD) to calculate the attractor, which can mitigate the speaker permutation problem and facilitate easier model convergence. In the training process, we propose a teacher-forcing strategy to obtain the enrollment information using the ground-truth label. Furthermore, we propose three heuristic decoding methods to identify the enrollment area for each speaker during the evaluation process. Additionally, we enhance the attractor calculation network LSTM used in the end-to-end encoder-decoder based attractor calculation (EEND-EDA) system by incorporating an attention-based model. By utilizing such an attention-based attractor decoder, our proposed AED-EEND system outperforms both the EEND-EDA and TS-VAD systems with only 0.5s of enrollment data.
Abstract:Spiking Neural Networks (SNNs) have received considerable attention not only for their superiority in energy efficient with discrete signal processing, but also for their natural suitability to integrate multi-scale biological plasticity. However, most SNNs directly adopt the structure of the well-established DNN, rarely automatically design Neural Architecture Search (NAS) for SNNs. The neural motifs topology, modular regional structure and global cross-brain region connection of the human brain are the product of natural evolution and can serve as a perfect reference for designing brain-inspired SNN architecture. In this paper, we propose a Multi-Scale Evolutionary Neural Architecture Search (MSE-NAS) for SNN, simultaneously considering micro-, meso- and macro-scale brain topologies as the evolutionary search space. MSE-NAS evolves individual neuron operation, self-organized integration of multiple circuit motifs, and global connectivity across motifs through a brain-inspired indirect evaluation function, Representational Dissimilarity Matrices (RDMs). This training-free fitness function could greatly reduce computational consumption and NAS's time, and its task-independent property enables the searched SNNs to exhibit excellent transferbility and scalability. Extensive experiments demonstrate that the proposed algorithm achieves state-of-the-art (SOTA) performance with shorter simulation steps on static datasets (CIFAR10, CIFAR100) and neuromorphic datasets (CIFAR10-DVS and DVS128-Gesture). The thorough analysis also illustrates the significant performance improvement and consistent bio-interpretability deriving from the topological evolution at different scales and the RDMs fitness function.
Abstract:Automatic speaker verification task has made great achievements using deep learning approaches with the large-scale manually annotated dataset. However, it's very difficult and expensive to collect a large amount of well-labeled data for system building. In this paper, we propose a novel and advanced self-supervised learning framework which can construct a high performance speaker verification system without using any labeled data. To avoid the impact of false negative pairs, we adopt the self-distillation with no labels (DINO) framework as the initial model, which can be trained without exploiting negative pairs. Then, we introduce a cluster-aware training strategy for DINO to improve the diversity of data. In the iteration learning stage, due to a mass of unreliable labels from clustering, the quality of pseudo labels is important for the system training. This motivates us to propose dynamic loss-gate and label correction (DLG-LC) methods to alleviate the performance degradation caused by unreliable labels. More specifically, we model the loss distribution with GMM and obtain the loss-gate threshold dynamically to distinguish the reliable and unreliable labels. Besides, we adopt the model predictions to correct the unreliable label, for better utilizing the unreliable data rather than dropping them directly. Moreover, we extend the DLG-LC to multi-modality to further improve the performance. The experiments are performed on the commonly used Voxceleb dataset. Compared to the best-known self-supervised speaker verification system, our proposed method obtain 22.17%, 27.94% and 25.56% relative EER improvement on Vox-O, Vox-E and Vox-H test sets, even with fewer iterations, smaller models, and simpler clustering methods. More importantly, the newly proposed system even achieves comparable results with the fully supervised system, but without using any human labeled data.
Abstract:The architecture design and multi-scale learning principles of the human brain that evolved over hundreds of millions of years are crucial to realizing human-like intelligence. Spiking Neural Network (SNN) based Liquid State Machine (LSM) serves as a suitable architecture to study brain-inspired intelligence because of its brain-inspired structure and the potential for integrating multiple biological principles. Existing researches on LSM focus on different certain perspectives, including high-dimensional encoding or optimization of the liquid layer, network architecture search, and application to hardware devices. There is still a lack of in-depth inspiration from the learning and structural evolution mechanism of the brain. Considering these limitations, this paper presents a novel LSM learning model that integrates adaptive structural evolution and multi-scale biological learning rules. For structural evolution, an adaptive evolvable LSM model is developed to optimize the neural architecture design of liquid layer with separation property. For brain-inspired learning of LSM, we propose a dopamine-modulated Bienenstock-Cooper-Munros (DA-BCM) method that incorporates global long-term dopamine regulation and local trace-based BCM synaptic plasticity. Comparative experimental results on different decision-making tasks show that introducing structural evolution of the liquid layer, and the DA-BCM regulation of the liquid layer and the readout layer could improve the decision-making ability of LSM and flexibly adapt to rule reversal. This work is committed to exploring how evolution can help to design more appropriate network architectures and how multi-scale neuroplasticity principles coordinated to enable the optimization and learning of LSMs for relatively complex decision-making tasks.