Abstract:A brain-computer interface (BCI) system enables direct communication between the brain and external devices, offering significant potential for assistive technologies and advanced human-computer interaction. Despite progress, BCI systems face persistent challenges, including signal variability, classification inefficiency, and difficulty adapting to individual users in real time. In this study, we propose a novel hybrid quantum learning model, termed QSVM-QNN, which integrates a Quantum Support Vector Machine (QSVM) with a Quantum Neural Network (QNN), to improve classification accuracy and robustness in EEG-based BCI tasks. Unlike existing models, QSVM-QNN combines the decision boundary capabilities of QSVM with the expressive learning power of QNN, leading to superior generalization performance. The proposed model is evaluated on two benchmark EEG datasets, achieving high accuracies of 0.990 and 0.950, outperforming both classical and standalone quantum models. To demonstrate real-world viability, we further validated the robustness of QNN, QSVM, and QSVM-QNN against six realistic quantum noise models, including bit flip and phase damping. These experiments reveal that QSVM-QNN maintains stable performance under noisy conditions, establishing its applicability for deployment in practical, noisy quantum environments. Beyond BCI, the proposed hybrid quantum architecture is generalizable to other biomedical and time-series classification tasks, offering a scalable and noise-resilient solution for next-generation neurotechnological systems.
Abstract:Data imputation is a critical step in data pre-processing, particularly for datasets with missing or unreliable values. This study introduces a novel quantum-inspired imputation framework evaluated on the UCI Diabetes dataset, which contains biologically implausible missing values across several clinical features. The method integrates Principal Component Analysis (PCA) with quantum-assisted rotations, optimized through gradient-free classical optimizers -COBYLA, Simulated Annealing, and Differential Evolution to reconstruct missing values while preserving statistical fidelity. Reconstructed values are constrained within +/-2 standard deviations of original feature distributions, avoiding unrealistic clustering around central tendencies. This approach achieves a substantial and statistically significant improvement, including an average reduction of over 85% in Wasserstein distance and Kolmogorov-Smirnov test p-values between 0.18 and 0.22, compared to p-values > 0.99 in classical methods such as Mean, KNN, and MICE. The method also eliminates zero-value artifacts and enhances the realism and variability of imputed data. By combining quantum-inspired transformations with a scalable classical framework, this methodology provides a robust solution for imputation tasks in domains such as healthcare and AI pipelines, where data quality and integrity are crucial.
Abstract:Social financial technology focuses on trust, sustainability, and social responsibility, which require advanced technologies to address complex financial tasks in the digital era. With the rapid growth in online transactions, automating credit card fraud detection and loan eligibility prediction has become increasingly challenging. Classical machine learning (ML) models have been used to solve these challenges; however, these approaches often encounter scalability, overfitting, and high computational costs due to complexity and high-dimensional financial data. Quantum computing (QC) and quantum machine learning (QML) provide a promising solution to efficiently processing high-dimensional datasets and enabling real-time identification of subtle fraud patterns. However, existing quantum algorithms lack robustness in noisy environments and fail to optimize performance with reduced feature sets. To address these limitations, we propose a quantum feature deep neural network (QFDNN), a novel, resource efficient, and noise-resilient quantum model that optimizes feature representation while requiring fewer qubits and simpler variational circuits. The model is evaluated using credit card fraud detection and loan eligibility prediction datasets, achieving competitive accuracies of 82.2% and 74.4%, respectively, with reduced computational overhead. Furthermore, we test QFDNN against six noise models, demonstrating its robustness across various error conditions. Our findings highlight QFDNN potential to enhance trust and security in social financial technology by accurately detecting fraudulent transactions while supporting sustainability through its resource-efficient design and minimal computational overhead.
Abstract:This paper introduces Quantum-SMOTEV2, an advanced variant of the Quantum-SMOTE method, leveraging quantum computing to address class imbalance in machine learning datasets without K-Means clustering. Quantum-SMOTEV2 synthesizes data samples using swap tests and quantum rotation centered around a single data centroid, concentrating on the angular distribution of minority data points and the concept of angular outliers (AOL). Experimental results show significant enhancements in model performance metrics at moderate SMOTE levels (30-36%), which previously required up to 50% with the original method. Quantum-SMOTEV2 maintains essential features of its predecessor (arXiv:2402.17398), such as rotation angle, minority percentage, and splitting factor, allowing for tailored adaptation to specific dataset needs. The method is scalable, utilizing compact swap tests and low depth quantum circuits to accommodate a large number of features. Evaluation on the public Cell-to-Cell Telecom dataset with Random Forest (RF), K-Nearest Neighbours (KNN) Classifier, and Neural Network (NN) illustrates that integrating Angular Outliers modestly boosts classification metrics like accuracy, F1 Score, AUC-ROC, and AUC-PR across different proportions of synthetic data, highlighting the effectiveness of Quantum-SMOTEV2 in enhancing model performance for edge cases.
Abstract:Sentiment analysis is an essential component of natural language processing, used to analyze sentiments, attitudes, and emotional tones in various contexts. It provides valuable insights into public opinion, customer feedback, and user experiences. Researchers have developed various classical machine learning and neuro-fuzzy approaches to address the exponential growth of data and the complexity of language structures in sentiment analysis. However, these approaches often fail to determine the optimal number of clusters, interpret results accurately, handle noise or outliers efficiently, and scale effectively to high-dimensional data. Additionally, they are frequently insensitive to input variations. In this paper, we propose a novel hybrid approach for sentiment analysis called the Quantum Fuzzy Neural Network (QFNN), which leverages quantum properties and incorporates a fuzzy layer to overcome the limitations of classical sentiment analysis algorithms. In this study, we test the proposed approach on two Twitter datasets: the Coronavirus Tweets Dataset (CVTD) and the General Sentimental Tweets Dataset (GSTD), and compare it with classical and hybrid algorithms. The results demonstrate that QFNN outperforms all classical, quantum, and hybrid algorithms, achieving 100% and 90% accuracy in the case of CVTD and GSTD, respectively. Furthermore, QFNN demonstrates its robustness against six different noise models, providing the potential to tackle the computational complexity associated with sentiment analysis on a large scale in a noisy environment. The proposed approach expedites sentiment data processing and precisely analyses different forms of textual data, thereby enhancing sentiment classification and insights associated with sentiment analysis.
Abstract:The paper proposes the Quantum-SMOTE method, a novel solution that uses quantum computing techniques to solve the prevalent problem of class imbalance in machine learning datasets. Quantum-SMOTE, inspired by the Synthetic Minority Oversampling Technique (SMOTE), generates synthetic data points using quantum processes such as swap tests and quantum rotation. The process varies from the conventional SMOTE algorithm's usage of K-Nearest Neighbors (KNN) and Euclidean distances, enabling synthetic instances to be generated from minority class data points without relying on neighbor proximity. The algorithm asserts greater control over the synthetic data generation process by introducing hyperparameters such as rotation angle, minority percentage, and splitting factor, which allow for customization to specific dataset requirements. The approach is tested on a public dataset of TelecomChurn and evaluated alongside two prominent classification algorithms, Random Forest and Logistic Regression, to determine its impact along with varying proportions of synthetic data.