Abstract:Data imputation is a critical step in data pre-processing, particularly for datasets with missing or unreliable values. This study introduces a novel quantum-inspired imputation framework evaluated on the UCI Diabetes dataset, which contains biologically implausible missing values across several clinical features. The method integrates Principal Component Analysis (PCA) with quantum-assisted rotations, optimized through gradient-free classical optimizers -COBYLA, Simulated Annealing, and Differential Evolution to reconstruct missing values while preserving statistical fidelity. Reconstructed values are constrained within +/-2 standard deviations of original feature distributions, avoiding unrealistic clustering around central tendencies. This approach achieves a substantial and statistically significant improvement, including an average reduction of over 85% in Wasserstein distance and Kolmogorov-Smirnov test p-values between 0.18 and 0.22, compared to p-values > 0.99 in classical methods such as Mean, KNN, and MICE. The method also eliminates zero-value artifacts and enhances the realism and variability of imputed data. By combining quantum-inspired transformations with a scalable classical framework, this methodology provides a robust solution for imputation tasks in domains such as healthcare and AI pipelines, where data quality and integrity are crucial.
Abstract:This paper introduces Quantum-SMOTEV2, an advanced variant of the Quantum-SMOTE method, leveraging quantum computing to address class imbalance in machine learning datasets without K-Means clustering. Quantum-SMOTEV2 synthesizes data samples using swap tests and quantum rotation centered around a single data centroid, concentrating on the angular distribution of minority data points and the concept of angular outliers (AOL). Experimental results show significant enhancements in model performance metrics at moderate SMOTE levels (30-36%), which previously required up to 50% with the original method. Quantum-SMOTEV2 maintains essential features of its predecessor (arXiv:2402.17398), such as rotation angle, minority percentage, and splitting factor, allowing for tailored adaptation to specific dataset needs. The method is scalable, utilizing compact swap tests and low depth quantum circuits to accommodate a large number of features. Evaluation on the public Cell-to-Cell Telecom dataset with Random Forest (RF), K-Nearest Neighbours (KNN) Classifier, and Neural Network (NN) illustrates that integrating Angular Outliers modestly boosts classification metrics like accuracy, F1 Score, AUC-ROC, and AUC-PR across different proportions of synthetic data, highlighting the effectiveness of Quantum-SMOTEV2 in enhancing model performance for edge cases.
Abstract:The paper proposes the Quantum-SMOTE method, a novel solution that uses quantum computing techniques to solve the prevalent problem of class imbalance in machine learning datasets. Quantum-SMOTE, inspired by the Synthetic Minority Oversampling Technique (SMOTE), generates synthetic data points using quantum processes such as swap tests and quantum rotation. The process varies from the conventional SMOTE algorithm's usage of K-Nearest Neighbors (KNN) and Euclidean distances, enabling synthetic instances to be generated from minority class data points without relying on neighbor proximity. The algorithm asserts greater control over the synthetic data generation process by introducing hyperparameters such as rotation angle, minority percentage, and splitting factor, which allow for customization to specific dataset requirements. The approach is tested on a public dataset of TelecomChurn and evaluated alongside two prominent classification algorithms, Random Forest and Logistic Regression, to determine its impact along with varying proportions of synthetic data.