Abstract:Human epidermal growth factor receptor 2 (HER2) is a critical protein in cancer cell growth that signifies the aggressiveness of breast cancer (BC) and helps predict its prognosis. Accurate assessment of immunohistochemically (IHC) stained tissue slides for HER2 expression levels is essential for both treatment guidance and understanding of cancer mechanisms. Nevertheless, the traditional workflow of manual examination by board-certified pathologists encounters challenges, including inter- and intra-observer inconsistency and extended turnaround times. Here, we introduce a deep learning-based approach utilizing pyramid sampling for the automated classification of HER2 status in IHC-stained BC tissue images. Our approach analyzes morphological features at various spatial scales, efficiently managing the computational load and facilitating a detailed examination of cellular and larger-scale tissue-level details. This method addresses the tissue heterogeneity of HER2 expression by providing a comprehensive view, leading to a blind testing classification accuracy of 84.70%, on a dataset of 523 core images from tissue microarrays. Our automated system, proving reliable as an adjunct pathology tool, has the potential to enhance diagnostic precision and evaluation speed, and might significantly impact cancer treatment planning.
Abstract:Systemic amyloidosis is a group of diseases characterized by the deposition of misfolded proteins in various organs and tissues, leading to progressive organ dysfunction and failure. Congo red stain is the gold standard chemical stain for the visualization of amyloid deposits in tissue sections, as it forms complexes with the misfolded proteins and shows a birefringence pattern under polarized light microscopy. However, Congo red staining is tedious and costly to perform, and prone to false diagnoses due to variations in the amount of amyloid, staining quality and expert interpretation through manual examination of tissue under a polarization microscope. Here, we report the first demonstration of virtual birefringence imaging and virtual Congo red staining of label-free human tissue to show that a single trained neural network can rapidly transform autofluorescence images of label-free tissue sections into brightfield and polarized light microscopy equivalent images, matching the histochemically stained versions of the same samples. We demonstrate the efficacy of our method with blind testing and pathologist evaluations on cardiac tissue where the virtually stained images agreed well with the histochemically stained ground truth images. Our virtually stained polarization and brightfield images highlight amyloid birefringence patterns in a consistent, reproducible manner while mitigating diagnostic challenges due to variations in the quality of chemical staining and manual imaging processes as part of the clinical workflow.
Abstract:Large-scale and high-dimensional permutation operations are important for various applications in e.g., telecommunications and encryption. Here, we demonstrate the use of all-optical diffractive computing to execute a set of high-dimensional permutation operations between an input and output field-of-view through layer rotations in a diffractive optical network. In this reconfigurable multiplexed material designed by deep learning, every diffractive layer has four orientations: 0, 90, 180, and 270 degrees. Each unique combination of these rotatable layers represents a distinct rotation state of the diffractive design tailored for a specific permutation operation. Therefore, a K-layer rotatable diffractive material is capable of all-optically performing up to 4^K independent permutation operations. The original input information can be decrypted by applying the specific inverse permutation matrix to output patterns, while applying other inverse operations will lead to loss of information. We demonstrated the feasibility of this reconfigurable multiplexed diffractive design by approximating 256 randomly selected permutation matrices using K=4 rotatable diffractive layers. We also experimentally validated this reconfigurable diffractive network using terahertz radiation and 3D-printed diffractive layers, providing a decent match to our numerical results. The presented rotation-multiplexed diffractive processor design is particularly useful due to its mechanical reconfigurability, offering multifunctional representation through a single fabrication process.
Abstract:Phase imaging is widely used in biomedical imaging, sensing, and material characterization, among other fields. However, direct imaging of phase objects with subwavelength resolution remains a challenge. Here, we demonstrate subwavelength imaging of phase and amplitude objects based on all-optical diffractive encoding and decoding. To resolve subwavelength features of an object, the diffractive imager uses a thin, high-index solid-immersion layer to transmit high-frequency information of the object to a spatially-optimized diffractive encoder, which converts/encodes high-frequency information of the input into low-frequency spatial modes for transmission through air. The subsequent diffractive decoder layers (in air) are jointly designed with the encoder using deep-learning-based optimization, and communicate with the encoder layer to create magnified images of input objects at its output, revealing subwavelength features that would otherwise be washed away due to diffraction limit. We demonstrate that this all-optical collaboration between a diffractive solid-immersion encoder and the following decoder layers in air can resolve subwavelength phase and amplitude features of input objects in a highly compact design. To experimentally demonstrate its proof-of-concept, we used terahertz radiation and developed a fabrication method for creating monolithic multi-layer diffractive processors. Through these monolithically fabricated diffractive encoder-decoder pairs, we demonstrated phase-to-intensity transformations and all-optically reconstructed subwavelength phase features of input objects by directly transforming them into magnified intensity features at the output. This solid-immersion-based diffractive imager, with its compact and cost-effective design, can find wide-ranging applications in bioimaging, endoscopy, sensing and materials characterization.
Abstract:Data protection methods like cryptography, despite being effective, inadvertently signal the presence of secret communication, thereby drawing undue attention. Here, we introduce an optical information hiding camera integrated with an electronic decoder, optimized jointly through deep learning. This information hiding-decoding system employs a diffractive optical processor as its front-end, which transforms and hides input images in the form of ordinary-looking patterns that deceive/mislead human observers. This information hiding transformation is valid for infinitely many combinations of secret messages, all of which are transformed into ordinary-looking output patterns, achieved all-optically through passive light-matter interactions within the optical processor. By processing these ordinary-looking output images, a jointly-trained electronic decoder neural network accurately reconstructs the original information hidden within the deceptive output pattern. We numerically demonstrated our approach by designing an information hiding diffractive camera along with a jointly-optimized convolutional decoder neural network. The efficacy of this system was demonstrated under various lighting conditions and noise levels, showing its robustness. We further extended this information hiding camera to multi-spectral operation, allowing the concealment and decoding of multiple images at different wavelengths, all performed simultaneously in a single feed-forward operation. The feasibility of our framework was also demonstrated experimentally using THz radiation. This optical encoder-electronic decoder-based co-design provides a novel information hiding camera interface that is both high-speed and energy-efficient, offering an intriguing solution for visual information security.
Abstract:The Auto-ICell system, a novel, and cost-effective integrated droplet microfluidic system, is introduced for real-time analysis of single-cell morphology and apoptosis. This system integrates a 3D-printed microfluidic chip with image analysis algorithms, enabling the generation of uniform droplet reactors and immediate image analysis. The system employs a color-based image analysis algorithm in the bright field for droplet content analysis. Meanwhile, in the fluorescence field, cell apoptosis is quantitatively measured through a combination of deep-learning-enabled multiple fluorescent channel analysis and a live/dead cell stain kit. Breast cancer cells are encapsulated within uniform droplets, with diameters ranging from 70 {\mu}m to 240 {\mu}m, generated at a high throughput of 1,500 droplets per minute. Real-time image analysis results are displayed within 2 seconds on a custom graphical user interface (GUI). The system provides an automatic calculation of the distribution and ratio of encapsulated dyes in the bright field, and in the fluorescent field, cell blebbing and cell circularity are observed and quantified respectively. The Auto-ICell system is non-invasive and provides online detection, offering a robust, time-efficient, user-friendly, and cost-effective solution for single-cell analysis. It significantly enhances the detection throughput of droplet single-cell analysis by reducing setup costs and improving operational performance. This study highlights the potential of the Auto-ICell system in advancing biological research and personalized disease treatment, with promising applications in cell culture, biochemical microreactors, drug carriers, cell-based assays, synthetic biology, and point-of-care diagnostics.
Abstract:As an optical processor, a Diffractive Deep Neural Network (D2NN) utilizes engineered diffractive surfaces designed through machine learning to perform all-optical information processing, completing its tasks at the speed of light propagation through thin optical layers. With sufficient degrees-of-freedom, D2NNs can perform arbitrary complex-valued linear transformations using spatially coherent light. Similarly, D2NNs can also perform arbitrary linear intensity transformations with spatially incoherent illumination; however, under spatially incoherent light, these transformations are non-negative, acting on diffraction-limited optical intensity patterns at the input field-of-view (FOV). Here, we expand the use of spatially incoherent D2NNs to complex-valued information processing for executing arbitrary complex-valued linear transformations using spatially incoherent light. Through simulations, we show that as the number of optimized diffractive features increases beyond a threshold dictated by the multiplication of the input and output space-bandwidth products, a spatially incoherent diffractive visual processor can approximate any complex-valued linear transformation and be used for all-optical image encryption using incoherent illumination. The findings are important for the all-optical processing of information under natural light using various forms of diffractive surface-based optical processors.
Abstract:Diffractive deep neural networks (D2NNs) are composed of successive transmissive layers optimized using supervised deep learning to all-optically implement various computational tasks between an input and output field-of-view (FOV). Here, we present a pyramid-structured diffractive optical network design (which we term P-D2NN), optimized specifically for unidirectional image magnification and demagnification. In this P-D2NN design, the diffractive layers are pyramidally scaled in alignment with the direction of the image magnification or demagnification. Our analyses revealed the efficacy of this P-D2NN design in unidirectional image magnification and demagnification tasks, producing high-fidelity magnified or demagnified images in only one direction, while inhibiting the image formation in the opposite direction - confirming the desired unidirectional imaging operation. Compared to the conventional D2NN designs with uniform-sized successive diffractive layers, P-D2NN design achieves similar performance in unidirectional magnification tasks using only half of the diffractive degrees of freedom within the optical processor volume. Furthermore, it maintains its unidirectional image magnification/demagnification functionality across a large band of illumination wavelengths despite being trained with a single illumination wavelength. With this pyramidal architecture, we also designed a wavelength-multiplexed diffractive network, where a unidirectional magnifier and a unidirectional demagnifier operate simultaneously in opposite directions, at two distinct illumination wavelengths. The efficacy of the P-D2NN architecture was also validated experimentally using monochromatic terahertz illumination, successfully matching our numerical simulations. P-D2NN offers a physics-inspired strategy for designing task-specific visual processors.
Abstract:Centrifuges serve as essential instruments in modern experimental sciences, facilitating a wide range of routine sample processing tasks that necessitate material sedimentation. However, the study for real time observation of the dynamical process during centrifugation has remained elusive. In this study, we developed an innovative Lab_in_a_Tube imaging spectrophotometer that incorporates capabilities of real time image analysis and programmable interruption. This portable LIAT device costs less than 30 US dollars. Based on our knowledge, it is the first Wi Fi camera built_in in common lab centrifuges with active closed_loop control. We tested our LIAT imaging spectrophotometer with solute solvent interaction investigation obtained from lab centrifuges with quantitative data plotting in a real time manner. Single re circulating flow was real time observed, forming the ring shaped pattern during centrifugation. To the best of our knowledge, this is the very first observation of similar phenomena. We developed theoretical simulations for the single particle in a rotating reference frame, which correlated well with experimental results. We also demonstrated the first demonstration to visualize the blood sedimentation process in clinical lab centrifuges. This remarkable cost effectiveness opens up exciting opportunities for centrifugation microbiology research and paves the way for the creation of a network of computational imaging spectrometers at an affordable price for large scale and continuous monitoring of centrifugal processes in general.
Abstract:Under spatially-coherent light, a diffractive optical network composed of structured surfaces can be designed to perform any arbitrary complex-valued linear transformation between its input and output fields-of-view (FOVs) if the total number (N) of optimizable phase-only diffractive features is greater than or equal to ~2 Ni x No, where Ni and No refer to the number of useful pixels at the input and the output FOVs, respectively. Here we report the design of a spatially-incoherent diffractive optical processor that can approximate any arbitrary linear transformation in time-averaged intensity between its input and output FOVs. Under spatially-incoherent monochromatic light, the spatially-varying intensity point spread functon(H) of a diffractive network, corresponding to a given, arbitrarily-selected linear intensity transformation, can be written as H(m,n;m',n')=|h(m,n;m',n')|^2, where h is the spatially-coherent point-spread function of the same diffractive network, and (m,n) and (m',n') define the coordinates of the output and input FOVs, respectively. Using deep learning, supervised through examples of input-output profiles, we numerically demonstrate that a spatially-incoherent diffractive network can be trained to all-optically perform any arbitrary linear intensity transformation between its input and output if N is greater than or equal to ~2 Ni x No. These results constitute the first demonstration of universal linear intensity transformations performed on an input FOV under spatially-incoherent illumination and will be useful for designing all-optical visual processors that can work with incoherent, natural light.