Abstract:Pre-trained models exhibit strong generalization to various downstream tasks. However, given the numerous models available in the model hub, identifying the most suitable one by individually fine-tuning is time-consuming. In this paper, we propose \textbf{SwiftTS}, a swift selection framework for time series pre-trained models. To avoid expensive forward propagation through all candidates, SwiftTS adopts a learning-guided approach that leverages historical dataset-model performance pairs across diverse horizons to predict model performance on unseen datasets. It employs a lightweight dual-encoder architecture that embeds time series and candidate models with rich characteristics, computing patchwise compatibility scores between data and model embeddings for efficient selection. To further enhance the generalization across datasets and horizons, we introduce a horizon-adaptive expert composition module that dynamically adjusts expert weights, and the transferable cross-task learning with cross-dataset and cross-horizon task sampling to enhance out-of-distribution (OOD) robustness. Extensive experiments on 14 downstream datasets and 8 pre-trained models demonstrate that SwiftTS achieves state-of-the-art performance in time series pre-trained model selection.




Abstract:With the continued migration of storage to cloud database systems,the impact of slow queries in such systems on services and user experience is increasing. Root-cause diagnosis plays an indispensable role in facilitating slow-query detection and revision. This paper proposes a method capable of both identifying possible root cause types for slow queries and ranking these according to their potential for accelerating slow queries. This enables prioritizing root causes with the highest impact, in turn improving slow-query revision effectiveness. To enable more accurate and detailed diagnoses, we propose the multimodal Ranking for the Root Causes of slow queries (RCRank) framework, which formulates root cause analysis as a multimodal machine learning problem and leverages multimodal information from query statements, execution plans, execution logs, and key performance indicators. To obtain expressive embeddings from its heterogeneous multimodal input, RCRank integrates self-supervised pre-training that enhances cross-modal alignment and task relevance. Next, the framework integrates root-cause-adaptive cross Transformers that enable adaptive fusion of multimodal features with varying characteristics. Finally, the framework offers a unified model that features an impact-aware training objective for identifying and ranking root causes. We report on experiments on real and synthetic datasets, finding that RCRank is capable of consistently outperforming the state-of-the-art methods at root cause identification and ranking according to a range of metrics.